Skip to main content
Log in

Two-Dimensional Poroelastic Problem for Saturated Soil Under Fractional Order Theory of Thermoelasticity

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) half-space elastic subgrade with multiple physical field coupling is examined in this study with normal mode analysis (NMA) under Ezzat’s fractional order generalized thermoelasticity. The coupled multiple physical field is investigated considering the temperature, stress, and seepage fields. The influence of fractional derivatives and frequency on the thermo-hydro-mechanical (THM) coupling dynamic response of saturated porous elastic subgrade is analyzed when the upper surface of the saturated porous elastic subgrade is subjected to the action of a time-harmonic load including normal and thermal loads. The distributions of non-dimension temperature increment, excess pore water pressure, vertical stress, and vertical displacement are obtained accordingly. The NMA method is derived via weighted residuals, which eliminates the discrete error and truncation error otherwise caused by the integral transformation. Regardless of load type, the load frequency significantly influences all physical variables. When considering the thermal source on the upper surface, the fractional derivatives have obvious influence on all physical variables. While, during considering a mechanical load, the fractional derivatives only have a certain influence on the non-dimension temperature increment without markedly affecting other variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(d\) :

\(d = \frac{{\rho_{w} g}}{{\kappa_{d} }}\)

\(c_{w}\) :

Pore water heat capacity

\(c_{s}\) :

Solid particles heat capacity

\(e\) :

Soil volumetric strain

\(g\) :

Gravity

\(K\) :

Thermal conductivity coefficient

\(m\) :

Heat capacity per unit volume

\(n_{0}\) :

Porosity

\(p\) :

Excess pore water pressure

\(Q\) :

Temperature load magnitude

\(q\) :

Magnitude of mechanical load

\(q_{i}\) :

Vector components of heat flow

\(T\) :

Absolute temperature

\(T_{0}\) :

Initial temperature

\(u_{i}\) :

Displacement vector component

\(\alpha_{1}\) :

Biot’s effective stress coefficient

\(\alpha_{s}\) :

Solid particles Thermal expansion coefficient

\(\alpha_{w}\) :

Pore water thermal expansion coefficient

\(\beta_{1}\) :

\(\beta_{1} = \left( {3\lambda + 2\mu } \right)\alpha_{s}\)

\(\delta_{ij}\) :

Kronecker delta

\(\varepsilon_{ij}\) :

Strain tensor component

\(\theta\) :

\(\theta = T - T_{0}\)

\(\kappa_{d}\) :

Permeability coefficient

\(\lambda ,\mu\) :

Lame’s constants

\(\upsilon\) :

Constant parameter (\(0 < \upsilon \le 1\))

\(\rho\) :

Density

\(\rho_{w}\) :

Pore water density

\(\rho_{s}\) :

Solid particles density

\(\sigma_{ij}\) :

Stress tensor component

\(\tau\) :

Thermal relaxation time factor

References

  • Abbas I.A., Marin M.: Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse. Iran J. Sci. Technol. Trans. Mech. Eng. 42, 57–71 (2018)

  • Abo-Dahab, S.M., Abd-Alla, A.M., Alqarni, A.J.: A two-dimensional problem with rotation and magnetic field in the context of four thermoelastic theories. Results Phys. 7, 2742–2751 (2017)

    Article  Google Scholar 

  • Abouelregal, A.E.: Modified fractional photo-thermoelastic model for a rotating semiconductor half-space subjected to a magnetic field. SILICON 12, 2837–2850 (2020a)

    Article  Google Scholar 

  • Abouelregal A.E.: Thermoelastic fractional derivative model for exciting viscoelastic microbeam resting on Winkler foundation. J. Vib. Control. https://doi.org/10.1177/1077546320956528 (2020)

  • Alharbi, A.M., Said, S.M., Othman, M.I.A.: The effect of multi-phase-lag and Coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium. STeel and Composite Structures 39, 125–134 (2021)

    Google Scholar 

  • Al-Mahdi A.M., Al-Gharabli M.M., Messaoudi S.A.: New general decay of solutions in a porous-thermoelastic system with infinite memory. J. Math. Aanl. Appl. 200, 125136 (2021)

  • Bachher, M., Sarkar, N.: Two-dimensional thermal shock problem of generalized magneto-thermoelasticity with a time-fractional heat conduction law. J. Mol. Eng. Mater. 4, 1650004 (2016)

    Article  Google Scholar 

  • Bachher, M., Sarkar, N., Lahiri, A.: Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources. Meccanica 50, 2167–2178 (2015)

    Article  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol. 27, 201–210 (1983)

    Article  Google Scholar 

  • Bai, B.: Fluctuation responses of saturated porous media subjected to cyclic thermal loading. Comput. Geotech. 33, 396–403 (2006)

    Article  Google Scholar 

  • Bassiouny, E., Youssef, H.M.: Sandwich structure panel subjected to thermal loading using fractional order equation of motion and moving heat source. Can. J. Phys. 96, 174–182 (2018)

    Article  Google Scholar 

  • Bayones F.S., Abo-Dahab S.M., Abouelregal A.E., et. al.: Model of fractional heat conduction in a thermoelastic thin slim strip under thermal shock and temperature-dependent thermal conductivity. CMC-Comput. Mater. Con. 67, 2899–2913 (2021)

  • Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  Google Scholar 

  • Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  Google Scholar 

  • Biot, M.A.: Variational Lagrangian-thermodynamics of non-isothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13, 579–597 (1977)

    Article  Google Scholar 

  • Biswas, S.: Eigenvalue approach to a magneto-thermoelastic problem in transversely isotropic hollow cylinder: comparison of three theories. Wave. Random Complex. 31, 403–419 (2021a)

    Article  Google Scholar 

  • Biswas S.: The propagation of plane waves in nonlocal viscothermoelastic porous medium based on nonlocal strain gradient theory. Wave. Random Complex. DOI: https://doi.org/10.1080/17455030.2021.1909780 (2021b)

  • Blond, E., Schmittn, N., Hild, F.: Response of saturated porous media to cyclic thermal loading. Int. J. Numer. Anal. Meth. Geomech. 27, 883–904 (2003)

    Article  Google Scholar 

  • Caputo, M.: Elasticitàe dissipazione. Zanichelli, Bologna (1969)

    Google Scholar 

  • Caputo, M.: Vibrations on an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56, 897–904 (1974)

    Article  Google Scholar 

  • Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elasticity 13, 125–147 (1983)

    Article  Google Scholar 

  • Ezzat, M.A.: Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Physica B 406, 30–35 (2011)

    Article  Google Scholar 

  • Gao, G.Y., Chen, J., Gu, X.Q., Song, J., Li, S.Y., Li, N.: Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading. Soil Dyn. Earthq. Eng. 93, 99–112 (2017)

    Article  Google Scholar 

  • Gao, G.Y., Xu, C.X., Chen, J., Song, J.: Investigation of ground vibrations induced by trains moving on saturated transversely isotropic ground. Soil Dyn. Earthq. Eng. 104, 40–44 (2018)

    Article  Google Scholar 

  • Garra, R.: Propagation of nonlinear thermoelastic waves in porous media within the theory of heat conduction with memory: physical derivation and exact solutions. Math. Meth. Appl. Sci. 40, 1307–1315 (2017)

    Article  Google Scholar 

  • Green, A.E., Lindsay, K.A.: Thermoelasticity. J Elasticity 2, 1–7 (1972)

    Article  Google Scholar 

  • Green, A.E., Naghdi, P.M.: A reexamination of the basic results of themomechanics. Proc. R. Soc. Lond. A 432, 171–194 (1991)

    Article  Google Scholar 

  • Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Thermal Stresses 15, 252–264 (1992)

    Article  Google Scholar 

  • Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elasticity 31, 189–208 (1993)

    Article  Google Scholar 

  • Guo, Y., Zhu, H.B., Xiong, C.B.: Dynamic response of coupled thermo-hydro-mechanical problem for saturated foundation under G-L generalized thermoelasticity. J. Porous Media. 22, 1651–1666 (2019)

    Article  Google Scholar 

  • Guo Y., Xiong C.B.: Influence of the viscoelastic relaxation time on a foundation under generalized poro-thermoelasticity. Wave. Random Complex. DOI: https://doi.org/10.1080/17455030.2021.1936283 (2021)

  • Guo Y., Zhu H.B., Xiong C.B., et. al.: A two-dimensional generalized thermo-hydro-mechanical coupled problem for a poroelastic half-space. Wave. Random Complex. DOI: https://doi.org/10.1080/17455030.2018.1557758 (2018)

  • Huang Y.S., Wei P.J.: Modelling the flexural waves in a nanoplate based on the fractional order nonlocal strain gradient elasticity and thermoelasticity. Compos. struct. 266: 113793 (2021)

  • Huang Y.S., Wei P.J., Xu Y.Q., Li Y.Q.: Modelling flexural wave propagation by the nonlocal strain gradient elasticity with fractional derivatives. Math. Mech. Solids. DOI: https://doi.org/10.1177/1081286521991206 (2021)

  • Jumarie, G.: Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time Application to Merton’s optimal portfolio. Comput. Math. Appl. 59, 1142–1164 (2010)

    Article  Google Scholar 

  • Kang, Y.G., Wei, P.J., Li, Y.Q., Zhang, P.: Modeling elastic wave propagation through a partially saturated poroviscoelastic interlayer by fractional order derivatives. Appl. Math. Model. 100, 612–631 (2021b)

    Article  Google Scholar 

  • Kang Y.G., Wei P.J., Li Y.Q., Zhang P.: Elastic waves propagation through a liquid-saturated poroelastic interlayer based on the fractional viscoelastic BISQ model. Wave Random Complex. DOI: https://doi.org/10.1080/17455030.2021.1954723 (2021a)

  • Koeller R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  Google Scholar 

  • Kumar R., Gupta R.R.: Axi-symmetric deformation in the micropolar porous generalized thermoelastic medium. B Pol. Acad. Sci.-Tech. 58, 129–139 (2010)

  • Kumar, N., Kamdi, D.B.: Thermal behavior of a finite hollow cylinder in context of fractional thermoelasticity with convection boundary conditions. J. Therm. Stresses 43, 1189–1204 (2020)

    Article  Google Scholar 

  • Li, Y.Q., Li, L., Wei, P.J., Wang, C.D.: Reflection and refraction of thermoelastic waves at an interface of two couple-stress solids based on Lord-Shulman thermoelastic theory. Appl. Math. Model 55, 536–550 (2018)

    Article  Google Scholar 

  • Liu, G.B., Xie, K.H., Zheng, R.Y.: Thermo-elastodynamic response of a spherical cavity in saturated poroelastic medium. Appl. Math. Model 34, 2203–2222 (2010a)

    Article  Google Scholar 

  • Liu, G.B., Xie, K.H., Zheng, R.Y.: Mode of a spherical cavity’s thermo-elastodynamic response in a saturated porous medium for non-torsional loads. Comput. Geotech. 37, 381–390 (2010b)

    Article  Google Scholar 

  • Liu, G.B., Xie, K.H., Zheng, R.Y.: The relacation effects of a saturated porous media using the generalized thermoviscoelasticity theory. Int. J. Eng. Sci. 48, 795–808 (2010c)

    Article  Google Scholar 

  • Liu G.B., Xie K.H., Zheng R.Y.: Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium. Science in China Ser. E: Tech. Sci. 52, 2373–2383 (2009)

  • Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  • Ma, Y.B., Peng, W.: Dynamic response of an infinite medium with a spherical cavity on temperature-dependent properties subjected to a thermal shock under fractional-order theory of thermoelasticity. J. Therm. Stresses 41, 302–312 (2018)

    Article  Google Scholar 

  • Mondal S., Othman M.I.A.: Memory dependent derivative effect on generalized piezo-thermoelastic medium under three theories. Wave Random Complex, DOI: https://doi.org/10.1080/17455030.2020.1730480 (2020)

  • Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration Mech. an. 72, 175–201 (1979)

    Article  Google Scholar 

  • Othman, M.I.A., Edeeb, E.R.M.: Effect of rotation on thermoelastic medium with voids and temperature-dependent elastic moduli under three theories. J Eng. Mech. 144, 04018003 (2018)

    Google Scholar 

  • Othman, M.I.A., Oman, S.: Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity. Acta Mech. 174, 129–143 (2005)

    Article  Google Scholar 

  • Othman, M.I.A., Elmaklizi, Y.D., Ahmed, E.A.A.: Influence of magnetic field on generalized piezo-thermoelastic rotating medium with two relaxation times. Microsyst. Technol. 23, 5599–5612 (2017)

    Article  Google Scholar 

  • Pan, Y., Zhang, Z.H., Liu, L.H.: Effect of rotation to a half-sapce in magneto-thermoelasticity with thermal relaxations. Key Eng. Mater. 353–358, 3018–3021 (2007)

    Article  Google Scholar 

  • Peshkov, V.: Second sound in helium II. J. Phys. 8, 381–382 (1944)

    Google Scholar 

  • Povstenko, Y.Z.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stresses 28, 83–102 (2005)

    Article  Google Scholar 

  • Povstenko, Y.: Fractional thermoelasticity. Springer International Publishing, Switzerland (2015)

    Book  Google Scholar 

  • Puri, P., Cowin, S.C.: Plane waves in linear elastic materials with voids. J. Elasticity 15, 167–183 (1985)

    Article  Google Scholar 

  • Ram, P., Sharma, N., Kumar, R.: Thermomechanical response of generalized thermoelastic diffusion with one relaxation time due to time harmonic sources. Int. J. Therm. Sci. 47, 315–323 (2008)

    Article  Google Scholar 

  • Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear heredity mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  • Saidi, A., Abouelregal, A.E.: Thermoelastic model with higher-order time-derivatives and two phase-lags for an infinitely long cylinder under initial stress and heat source. J. Appl. Comput. Mech. 7, 277–291 (2021)

    Google Scholar 

  • Sherief, H.H., El-Hagary, M.A.: Fractional order theory of thermo-viscoelasticity and application. Mech. Time-Depend. Mater. 24, 179–195 (2020)

    Article  Google Scholar 

  • Sherief, H.H., Saleh, H.A.: A half-space problem in the theory of generalized thermoelastic diffusion. Int. J. Solids Struct. 42, 4484–4493 (2005)

    Article  Google Scholar 

  • Sherief, H.H., El-Sayed, A.M.A., El-Latief, A.M.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47, 269–275 (2010)

    Article  Google Scholar 

  • Singh B., Sarkar S.P.: State-space approach on two-temperature three-phase-lag thermoelastic medium with a spherical cavity due to memory-dependent derivative. Arch. Appl. Mech. DOI: https://doi.org/10.1007/s00419-021-01964-8, (2021)

  • Smith D.W., Booker J.R:. Green’s functions for a fully coupled thermoporoelastic material. Int. J. Numer. Anal. Met. 17, 139–163 (1993)

  • Soleiman, A., Abouelregal, A.E., Khalil, K.M., et al.: Generalized thermoviscoelastic novel model with different fractional derivatives and multi-phase-lags. Eur. Phys. J. plus 135, 851 (2020)

    Article  Google Scholar 

  • Tao, H.B., Liu, G.B., Xie, K.H., Zheng, R.Y., Deng, Y.B.: Characteristics of wave propagation in the saturated thermoelastic porous medium. Transp. Porous Med. 103, 47–68 (2014)

    Article  Google Scholar 

  • Tzou D.Y.: A unified field approach for heat conduction from macro to micro scales. J. Heat Trans.-T ASME 117, 8–16 (1995)

  • Wang, E.J., Carcione, J.M., Yuan, Y., Ba, J.: Reflection of inhomogeneous plane waves at the surface of a thermo-poroelastic medium. Geophys. J. Int. 224, 1621–1639 (2021)

    Article  Google Scholar 

  • Wei, W., Zheng, R.Y., Liu, G.B., Tao, H.B.: Reflection and refraction of P wave at the interface between thermoelastic and porous thermoelastic medium. Transp. Porous Med. 113, 1–27 (2016)

    Article  Google Scholar 

  • Wu, Y., Yu, K.P., Yang, L.Y., Zhao, R.: Generalized thermoelastic band structures of Rayleigh wave in one-dimensional phononic crystals. Meccanica 53, 923–935 (2018)

    Article  Google Scholar 

  • Xiong, C.B., Guo, Y., Diao, Y.: Normal mode analysis to a poroelastic half-space problem under generalized thermoelasticity. Lat. Am. J. Solids Stru. 14, 933–952 (2017)

    Google Scholar 

  • Xu Y.S., Xu Z.D., He T.H., et al.: A fractional-order generalized thermoelastic problem of a bilayer piezoelectric plate for vibration control. J. Heat Trans.-T ASME 139, 082003 (2017)

  • Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)

    Article  Google Scholar 

  • Youssef, H.M.: Theory of fractional order generalized thermoelasticity. J. Heat Transf. 132, 1–7 (2010a)

    Article  Google Scholar 

  • Youssef, H.M., Al-Lehaibi, E.A.: Variational principle of fractional order generalized thermoelasticity. Appl. Math. Lett. 23, 1183–1187 (2010b)

    Article  Google Scholar 

  • Yu Y.J., Zhao L.J.: Fractional thermoelasticity revisited with new definitions of fractional derivative. Eur. J. Mech.-A Solid. 84, 104043 (2020)

Download references

Acknowledgements

This work was supported in part by Key Scientific Research Project of Henan Province (No. 22A130004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Xiong, C., Ma, J. et al. Two-Dimensional Poroelastic Problem for Saturated Soil Under Fractional Order Theory of Thermoelasticity. Transp Porous Med 141, 695–712 (2022). https://doi.org/10.1007/s11242-021-01742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01742-8

Keywords

Navigation