Al-Shalabi, E.W., Sepehrnoori, K.: A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks. J. Petrol. Sci. Eng. 139, 137–161 (2016). https://doi.org/10.1016/j.petrol.2015.11.027
Article
Google Scholar
Al-Shalabi, E.W., Sepehrnoori, K., Pope, G.: Geochemical interpretation of low-salinity-water injection in carbonate oil reservoirs. SPE J. 20(06), 1212–1226 (2015). https://doi.org/10.2118/169101-PA
Article
Google Scholar
Austad, T., Rezaeidoust, A., Puntervold, T.: Chemical mechanism of low salinity water flooding in sandstone reservoirs. SPE 129767, 19–22 (2010). https://doi.org/10.2118/129767-MS
Article
Google Scholar
Austad, T., Shariatpanahi, S.F., Strand, S., Aksulu, H., Puntervold, T.: Low salinity EOR effects in limestone reservoir cores containing anhydrite: a discussion of the chemical mechanism. Energy Fuels 29(11), 6903–6911 (2015). https://doi.org/10.1021/acs.energyfuels.5b01099
Article
Google Scholar
Awolayo, A.N., Sarma, H.K., Nghiem, L.X.: Numerical modeling of fluid–rock interactions during low-salinity-brine-co2 flooding in carbonate reservoirs. In: Paper presented at the SPE reservoir simulation conference, Galveston, Texas, USA, April 2019 (2019). https://doi.org/10.2118/193815-ms
Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107(20), 2045502 (2011). https://doi.org/10.1103/physrevlett.107.204502
Article
Google Scholar
Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Insights into non-Fickian solute transport in carbonates. Water Resour. Res. 49(5), 2714–2728 (2013). https://doi.org/10.1002/wrcr.20238
Article
Google Scholar
Bird, R., Stewart, W., Lightfoot, E.: Transport Phenomena. Wiley (2007)
Charlton, S.R., Parkhurst, D.L.: Modules based on the geochemical model PHREEQC for use in scripting and programming languages. Comput. Geosci. 37, 1653–1663 (2011). https://doi.org/10.1016/j.cageo.2011.02.005
Article
Google Scholar
Clerke, E., Mueller, W. H., Craig Phillips, E., Eyvazzadeh, Y. R, Jones, H. D., Ramamoorthy, R., Srivastava, A.: application of thomeer hyperbolas to decode the pore systems, facies and reservoir properties of the upper jurassic arab d limestone, ghawar field, saudi arabia: a rosetta stone approach. GeoArabia 13 (2008)
Collini, H., Li, S., Jackson, M.D., Agenet, N., Rashid, B., Couves, J.: Zeta potential in intact carbonates at reservoir conditions and its impact on oil recovery during controlled salinity waterflooding. Fuel 266, 116927 (2020). https://doi.org/10.1016/j.fuel.2019.116927
Article
Google Scholar
Danckwerts, P.: Continuous flow systems. Chem. Eng. Sci. 2(1), 1–13 (1953). https://doi.org/10.1016/0009-2509(53)80001-1
Article
Google Scholar
Delgado, J.M.: A critical review of dispersion in packed beds. Heat and Mass Transf./Waerme- und Stoffuebertragung 42(4), 279–310 (2006). https://doi.org/10.1007/s00231-005-0019-0
Article
Google Scholar
Farajzadeh, R., Guo, H., van Winden, J., Bruining, J.: Cation exchange in the presence of oil in porous media. ACS Earth Space Chem. 1(2), 101–112 (2017). https://doi.org/10.1021/acsearthspacechem.6b00015
Article
Google Scholar
Gist, G.A., Thompson, A.H., Katz, A.J., Higgins, R.L.: Hydrodynamic dispersion and pore geometry in consolidated rock. Phys. Fluids A 2(9), 1533–1544 (1990). https://doi.org/10.1063/1.857602
Article
Google Scholar
Gupta, S.P., Greenkorn, R.A.: Determination of dispersion and nonlinear adsorption parameters for flow in porous media. Water Resour. Res. 10(4), 839–846 (1974). https://doi.org/10.1029/WR010i004p00839
Article
Google Scholar
Hao, J., Mohammadkhani, S., Shahverdi, H., Esfahany, M.N., Shapiro, A.: Mechanisms of smart waterflooding in carbonate oil reservoirs—a review. J. Petrol. Sci. Eng. 179, 276–291 (2019). https://doi.org/10.1016/j.petrol.2019.04.049
Article
Google Scholar
Hashimoto, I., Deshpande, K.B., Thomas, H.C.: Peclet numbers and retardation factors for ion exchange columns. Ind. Eng. Chem. Fundam. 3(3), 213–218 (1964). https://doi.org/10.1021/i160011a007
Article
Google Scholar
Hill, H., Lake, L.: Cation exchange in chemical flooding: part 3—experimental. Soc. Petrol. Eng. J. 18(06), 445–456 (1987). https://doi.org/10.2118/6770-PA
Article
Google Scholar
Hu, X., Yutkin, M.P., Hassan, S., Wu, J., Prausnitz, J., Radke, C.: Calcium ion bridging of aqueous carboxylates onto silica: implications for low-salinity waterflooding. Energy Fuels 33(1), 127–134 (2018). https://doi.org/10.1021/acs.energyfuels.8b03366
Article
Google Scholar
Jackson, M.D., Al-Mahrouqi, D., Vinogradov, J.: Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding. Sci. Rep. (2016). https://doi.org/10.1038/srep37363
Article
Google Scholar
Jadhunandan, P.P., Morrow, N.R.: Effect of wettability on waterflood recovery for crude-oil/brine/rock systems. SPE Reserv. Eng. 10(1), 40–46 (1995). https://doi.org/10.2118/22597-pa
Article
Google Scholar
Katende, A., Sagala, F.: A critical review of low salinity water flooding: mechanism, laboratory and field application. J. Mol. Liq. 278, 627–649 (2019). https://doi.org/10.1016/j.molliq.2019.01.037
Article
Google Scholar
Kurotori, T., Zahasky, C., Hejazi, S.A.H., Shah, S.M., Benson, S.M., Pini, R.: Measuring, imaging and modelling solute transport in a microporous limestone. Chem. Eng. Sci. 196, 366–383 (2019). https://doi.org/10.1016/j.ces.2018.11.001
Article
Google Scholar
Lake, L.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)
Google Scholar
Lapidus, l, Amundson, N.R.: Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns. J. Phys. Chem. 56(8), 984–988 (1952). https://doi.org/10.1021/j150500a014
Mahani, H., Menezes, R., Berg, S., Fadili, A., Nasralla, R., Voskov, D., Joekar-Niasar, V.: Insights into the impact of temperature on the wettability alteration by low salinity in carbonate rocks. Energy Fuels 31(8), 7839–7853 (2017). https://doi.org/10.1021/acs.energyfuels.7b00776
Article
Google Scholar
Masalmeh, S.K., Sorop, T., Suijkerbuijk, B.M., Vermolen, E.C., van Douma, S., del Linde, H., Pieterse, S.: Low salinity flooding: experimental evaluation and numerical interpretation. IPTC (2014). https://doi.org/10.2523/iptc-17558-ms
Article
Google Scholar
Morrow, N., Buckley, J.: Improved oil recovery by low-salinity waterflooding. J. Petrol. Technol. 63(5), 106–112 (2011). https://doi.org/10.2118/129421-JPT
Article
Google Scholar
Morse, J.W., Arvidson, R.S.: The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci. Rev. 58(1–2), 51–84 (2002). https://doi.org/10.1016/S0012-8252(01)00083-6
Article
Google Scholar
Ogata, A., Banks, R.B.: A solution of the differential equation of longitudinal dispersion in porous media. Technical Report (1961). https://doi.org/10.3133/pp411A
Papathanasiou, T.D., Bijeljic, B.: Intraparticle diffusion alters the dynamic response of immobilized cell/enzyme columns. Bioprocess. Eng. 18(6), 419 (1998). https://doi.org/10.1007/s004490050465
Article
Google Scholar
Parkhurst, D.L., Appelo, C.A.J.: Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (2013). https://pubs.usgs.gov/tm/06/a43
Perkins, T., Johnston, O.: A review of diffusion and dispersion in porous media. Soc. Petrol. Eng. J. 3(01), 70–84 (1963). https://doi.org/10.2118/480-PA
Article
Google Scholar
Pope, G., Lake, L., Helfferich, F.: Cation exchange in chemical flooding: part 1-basic theory without dispersion. Soc. Petrol. Eng. J. 18(06), 418–434 (1978). https://doi.org/10.2118/6771-PA
Article
Google Scholar
Pouryousefy, E., Xie, Q., Saeedi, A.: Effect of multi-component ions exchange on low salinity EOR: coupled geochemical simulation study. Petroleum 2(3), 215–224 (2016). https://doi.org/10.1016/j.petlm.2016.05.004
Article
Google Scholar
Puntervold, T., Strand, S., Austad, T.: Water flooding of carbonate reservoirs: effects of a model base and natural crude oil bases on chalk wettability. Energy Fuels 21(3), 1606–1616 (2007). https://doi.org/10.1021/ef060624b
Article
Google Scholar
Puntervold, T., Strand, S., Austad, T.: Coinjection of seawater and produced water to improve oil recovery from fractured north sea chalk oil reservoirs. Energy Fuels 23(5), 2527–2536 (2009). https://doi.org/10.1021/ef801023u
Article
Google Scholar
Qiao, C., Johns, R., Li, L., Xu, J.: Modeling low salinity waterflooding in mineralogically different carbonates. In: Day 3 Wed, September 30, 2015, SPE (2015). https://doi.org/10.2118/175018-ms
Rexwinkel, G., Heesink, A., Van Swaaij, W.: Mass transfer in packed beds at low peclet numbers-wrong experiments or wrong interpretations? Chem. Eng. Sci. 52(21–22), 3995–4003 (1997). https://doi.org/10.1016/S0009-2509(97)00242-X
Article
Google Scholar
Rücker, M., Bartels, W.B., Garfi, G., Shams, M., Bultreys, T., Boone, M., Pieterse, S., Maitland, G., Krevor, S., Cnudde, V., Mahani, H., Berg, S., Georgiadis, A., Luckham, P.: Relationship between wetting and capillary pressure in a crude oil/brine/rock system: from nano-scale to core-scale. J. Colloid Interface Sci. 562, 159–169 (2020). https://doi.org/10.1016/j.jcis.2019.11.086
Article
Google Scholar
Sharma, H., Mohanty, K.K.: An experimental and modeling study to investigate brine-rock interactions during low salinity water flooding in carbonates. J. Petrol. Sci. Eng. 165, 1021–1039 (2018). https://doi.org/10.1016/j.petrol.2017.11.052
Article
Google Scholar
Singer, P., Mitchell, J., Fordham, E.: Characterizing dispersivity and stagnation in porous media using NMR flow propagators. J. Magn. Reson. 270, 98–107 (2016). https://doi.org/10.1016/j.jmr.2016.07.004
Article
Google Scholar
Soudek, A.: A site-binding model for multicomponent ion-exchange on montmorillonite. MSc thesis, University of California (1985)
Strand, S., Høgnesen, E.J., Austad, T.: Wettability alteration of carbonates–effects of potential determining ions (Ca2+ and SO\(_{4}^{2-}\) ) and temperature. Colloids Surf. A 275(1–3), 1–10 (2006) https://doi.org/10.1016/j.colsurfa.2005.10.061
Vargas, J.A.V., Pagotto, P.C., dos Santos, R.G., Trevisan, O.V.: Determination of dispersion coefficient in carbonate rock using computed tomography by matching in situ concentration curves. In: SPE Annual Technical Conference and Exhibition, International Symposium of the Society of Core Analysts, SCA2013-053 (2013)
Yousef, A.A., Al-Saleh, S., Al-Kaabi, A., Al-Jawfi, M.: Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs. SPE Reserv. Eval. Eng. 14(5), 578–593 (2011). https://doi.org/10.2118/137634-PA
Article
Google Scholar
Yutkin, M., Radke, C., Patzek, T.: Chemical compositions in salinity waterflooding of carbonate reservoirs: theory. Transp Porous Med 136(2), 411–429 (2021). https://doi.org/10.1007/s11242-020-01517-7
Article
Google Scholar
Yutkin, M.P., Mishra, H., Patzek, T.W., Lee, J., Radke, C.J.: Bulk and surface aqueous speciation of calcite: implications for low-salinity waterflooding of carbonate reservoirs. SPE J. 23(01), 084–101 (2018). https://doi.org/10.2118/182829-PA
Article
Google Scholar
Zhang, P., Austad, T.: Wettability and oil recovery from carbonates: effects of temperature and potential determining ions. Colloids Surf., A 279(1–3), 179–187 (2006). https://doi.org/10.1016/j.colsurfa.2006.01.009
Article
Google Scholar
Zhang, P., Tweheyo, M.T., Austad, T.: Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: impact of the potential determining ions, Ca2+Mg2+, and SO\(_{4}^{2-}\) . Colloids Surf., A 301(1–3), 199–208 (2007). https://doi.org/10.1016/j.colsurfa.2006.12.058