Skip to main content
Log in

Injection-Induced Poroelastic Response of Porous Media Containing Fine Particles, Incorporating Particle Mobilization, Transport, and Straining

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Fine-migration-induced permeability damage in geological reservoirs is a critical problem in several environmental and energy operations. This study presents a novel numerical model aimed at predicting the hydro-mechanical response of a saturated porous formation containing fines to injection-induced fluid flow. The proposed model contains two novel components: incorporation of spatiotemporal fluid flow in the porous formation, and integration of the coupled interactions between the poroelastic response of the saturated porous formation and fine mobilization, migration, and straining. The modified particle detachment model has been adopted, using the maximum retention function for a monolayer of size-distributed fines. The results from the proposed model reveal that incorporation of the fines migration, mobilization, and straining has a substantial impact on in situ pore pressures (~ 65% higher pore pressures were predicted at wellbore vicinity after 1 h injection when incorporating particle straining). The findings also depict a lower fine-migration-induced permeability damage when incorporating the poroelastic response of the porous layer to injection flow.

Article Highlights

  • Coupled interactions between geomechanical response of porous media and migration of in situ fines under injection.

  • Higher injection-induced pore pressures when incorporating particle mobilization and straining.

  • Reduction in fine-migration-induced permeability damage due to poroelastic response of injection layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Wellbore radius (m)

\({\mathbf{D}}\) :

Drained elastic stiffness tensor (Pa)

E :

Elastic modulus (Pa)

\({\mathbf{F}}_{{\text{u}}}\) :

External force (N)

\(k\) :

Intrinsic permeability (m)

\(k_{0}\) :

Initial intrinsic permeability (m)

\(K_{{\text{f}}}\) :

Fluid bulk modulus (Pa)

\(K_{{\text{s}}}\) :

Solid matrix bulk modulus (Pa)

M :

Biot’s modulus (Pa)

\({\mathbf{N}}_{{\text{F}}}\) :

Shape function of suspended fine particles

\({\mathbf{N}}_{{\text{p}}}\) :

Shape function of pore pressure

\({\mathbf{N}}_{{\text{u}}}\) :

Shape function of solid displacement

P :

Induced pore pressure (Pa)

\({\mathbf{q}}^{{\text{f}}}\) :

Fluid flux vector (m/s)

\(q_{{{\text{inj}}}}^{{\text{f}}}\) :

The rate of fluid injection (m/s)

\(r\) :

Radius (m)

\(r_{{{\text{scr}}}}\) :

Critical radius of fine particles (m)

\(s_{{\text{a}}}\) :

Concentration of attached fine particles

\(s_{{\text{c}}}\) :

Concentration of suspended fine particles

\(s_{{{\text{cr}}}}\) :

Maximal retention function

S s :

Concentration of strained fine particles

t :

Fluid injection time (s)

T :

Temperature (°C)

u :

Induced displacement vector (m)

\({\mathbf{v}}^{f}\) :

Fluid velocity vector (m/s)

\({\mathbf{v}}_{{\text{m}}}^{{\text{f}}}\) :

Maximum velocity vector when no particles can stay attached on rock surface (m/s)

\({{\varvec{\upalpha}}}\) :

Biot’s effective stress coefficient vector

\(\alpha_{{{\text{fd}}}}\) :

Coefficient of fines distribution

\(\alpha_{{{\text{fp}}}}\) :

Particle drift delay factor

\(\beta_{s}\) :

Formation damage coefficient

\({{\varvec{\updelta}}}\) :

Kronecker’s delta

\({{\varvec{\upvarepsilon}}}\) :

Induced strain vector

\(\kappa\) :

Fluid mobility coefficient [m/ (Pa‧s)]

\(\lambda_{s}\) :

Filtration coefficient

\(\mu\) :

Fluid viscosity (Pa‧s)

\(\nu\) :

Poisson’s ratio

\(\phi\) :

Porosity

\(\phi_{{\text{c}}}\) :

Cake porosity

\(\psi\) :

Maximum error allowed

\({{\varvec{\upsigma}}}\) :

Induced total stress vector (Pa)

\(\zeta\) :

Variation in fluid content

References

  • Atefi-Monfared, K., Rothenburg, L.: Poroelastic stress modifications surrounding a fully-penetrating injection well. J. Petrol. Sci. Eng. 135, 660–670 (2015)

    Article  Google Scholar 

  • Atefi-Monfared, K., Rothenburg, L.: Poro-elasto-plastic response of an unconsolidated formation confined with stiff seal rocks under radial injection. Int. J. Numer. Anal. Methods Geomech. 40(13), 1799–1826 (2016)

    Article  Google Scholar 

  • Atefi Monfared, K., Rothenburg, L.: Poroelasticity during fluid injection in confined geological reservoirs: incorporating effects of seal-rock stiffness. SPE J. 22(01), 184–197 (2017)

    Article  Google Scholar 

  • Atefi Monfared, K., Rybicki, J.: Production versus injection induced poroelasticity surrounding wells. J. Petrol. Sci. Eng. 162, 102–113 (2018)

    Article  Google Scholar 

  • Bathe, K.-J.: Finite element procedures. Klaus-Jurgen Bathe, Berlin (2006)

    Google Scholar 

  • Baudracco, J.: Variations in permeability and fine particle migrations in unconsolidated sandstones submitted to saline circulations. Geothermics (Int. J. Geotherm. Res. Appl.) (UK) 19(2), 213–221 (1990)

    Google Scholar 

  • Baudracco, J., Aoubouazza, M.: Permeability variations in Berea and Vosges sandstone submitted to cyclic temperature percolation of saline fluids. Geothermics 24(5–6), 661–677 (1995)

    Article  Google Scholar 

  • Bedrikovetsky, P., Caruso, N.: Analytical model for fines migration during water injection. Transp. Porous Media 101(2), 161–189 (2014)

    Article  Google Scholar 

  • Bedrikovetsky, P., Siqueira, F.D., Furtado, C.A., Souza, A.L.S.: Modified particle detachment model for colloidal transport in porous media. Transp. Porous Media 86(2), 353–383 (2011)

    Article  Google Scholar 

  • Bedrikovetsky, P., Zeinijahromi, A., Siqueira, F.D., Furtado, C.A., de Souza, A.L.S.: Particle detachment under velocity alternation during suspension transport in porous media. Transp. Porous Media 91(1), 173–197 (2012)

    Article  Google Scholar 

  • Bradford, S.A., Torkzaban, S., Shapiro, A.: A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Langmuir 29(23), 6944–6952 (2013)

    Article  Google Scholar 

  • Cheng, A.-D.: Material coefficients of anisotropic poroelasticity. Int. J. Rock Mech. Min. Sci. 34(2), 199–205 (1997)

    Article  Google Scholar 

  • Chequer, L., Vaz, A., Bedrikovetsky, P.: Injectivity decline during low-salinity waterflooding due to fines migration. J. Petrol. Sci. Eng. 165, 1054–1072 (2018)

    Article  Google Scholar 

  • Civan, F.: Reservoir formation damage. Gulf Professional Publishing, Oxford (2015)

    Google Scholar 

  • Cortis, A., Harter, T., Hou, L., Atwill, E.R., Packman, A.I., Green, P.G.: Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water. Resour. Res. 42(12), 1–12 (2006)

    Article  Google Scholar 

  • Detournay, E., Cheng, A.D.: Poroelastic response of a borehole in a non-hydrostatic stress field. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 171–182 (1988)

    Article  Google Scholar 

  • Detournay, E., Cheng, A.H.-D.: Fundamentals of poroelasticity. In: Analysis and design methods, pp. 113–171. Elsevier, New York (1993)

  • Guedes, R.G., Al-Abduwani, F.A., Bedrikovetsky, P., Currie, P.K.: Deep-bed filtration under multiple particle-capture mechanisms. SPE J. 14(03), 477–487 (2009)

    Article  Google Scholar 

  • Herzig, J., Leclerc, D., Goff, P.L.: Flow of suspensions through porous media—application to deep filtration. Ind. Eng. Chem. 62(5), 8–35 (1970)

    Article  Google Scholar 

  • Kanfar, M.F., Chen, Z., Rahman, S.: Effect of material anisotropy on time-dependent wellbore stability. Int. J. Rock Mech. Min. Sci. 78, 36–45 (2015)

    Article  Google Scholar 

  • Kanfar, M.F., Chen, Z., Rahman, S.: Fully coupled 3D anisotropic conductive-convective porothermoelasticity modeling for inclined boreholes. Geothermics 61, 135–148 (2016)

    Article  Google Scholar 

  • Khilar, K.C., Fogler, H.S.: Migrations of fines in porous media, vol. 12. Springer, Berlin (1998)

    Book  Google Scholar 

  • Kim, Y.S., Whittle, A.J.: Filtration in a porous granular medium: 1. Simulation of pore-scale particle deposition and clogging. Transp. Porous Media 65(1), 53–87 (2006)

    Article  Google Scholar 

  • Kokubun, M.E., Radu, F.A., Keilegavlen, E., Kumar, K., Spildo, K.: Transport of polymer particles in oil–water flow in porous media: Enhancing oil recovery. Transp. Porous Media 126(2), 501–519 (2019)

    Article  Google Scholar 

  • Lever, A., Dawe, R.A.: Water-sensitivity and migration of fines in the hopeman sandstone. J. Pet. Geol 7(1), 97–107 (1984). https://doi.org/10.1111/j.1747-5457.1984.tb00165.x

    Article  Google Scholar 

  • Massoudieh, A., Ginn, T.R.: Colloid-facilitated contaminant transport in unsaturated porous media. Model. Pollut. Complex Environ. Syst. 2, 263–286 (2010)

    Google Scholar 

  • McTigue, D.F.: Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. 91(B9), 9533–9542 (1986)

    Article  Google Scholar 

  • Mesticou, Z., Kacem, M., Dubujet, P.: Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: experiment and modeling. Transp. Porous Media 103(1), 1–24 (2014)

    Article  Google Scholar 

  • Muecke, T.W.: Formation fines and factors controlling their movement in porous media. J. Petrol. Technol. 31(02), 144–150 (1979)

    Article  Google Scholar 

  • Ochi, J., Vernoux, J.-F.: Permeability decrease in sandstone reservoirs by fluid injection: hydrodynamic and chemical effects. J. Hydrol. 208(3–4), 237–248 (1998)

    Article  Google Scholar 

  • Rice, J.R., Cleary, M.P.: Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14(2), 227–241 (1976)

    Article  Google Scholar 

  • Rosenbrand, E., Fabricius, I.L.: Effect of hot water injection on sandstone permeability: an analysis of experimental literature. In: SPE Europec/EAGE Annual Conference 2012. Society of Petroleum Engineers (2012)

  • Rosenbrand, E., Fabricius, I.L., Yuan, H.: Thermally induced permeability reduction due to particle migration in sandstones: the effect of temperature on kaolinite mobilisation and aggregation. In: Thirty-Seventh Workshop on Geothermal Reservoir Engineering (2012)

  • Rosenbrand, E., Haugwitz, C., Jacobsen, P.S.M., Kjøller, C., Fabricius, I.L.: The effect of hot water injection on sandstone permeability. Geothermics 50, 155–166 (2014)

    Article  Google Scholar 

  • Rosenbrand, E., Kjøller, C., Riis, J.F., Kets, F., Fabricius, I.L.: Different effects of temperature and salinity on permeability reduction by fines migration in Berea sandstone. Geothermics 53, 225–235 (2015)

    Article  Google Scholar 

  • Roshan, H., Masoumi, H., Zhang, Y., Al-Yaseri, A.Z., Iglauer, S., Lebedev, M., Sarmadivaleh, M.: Microstructural effects on mechanical properties of shaly sandstone. J. Geotech. Geoenviron. Eng. 144(2), 06017019 (2018)

    Article  Google Scholar 

  • Sarkar, A.K., Sharma, M.M.: Fines migration in two-phase flow. J. Petrol. Technol. 42(05), 646–652 (1990)

    Article  Google Scholar 

  • Schembre, J.M., Kovscek, A.R.: Mechanism of formation damage at elevated temperature. J. Energy. Resour. Technol. 127(3), 171–180 (2005)

    Article  Google Scholar 

  • Sefrioui, N., Ahmadi, A., Omari, A., Bertin, H.: Numerical simulation of retention and release of colloids in porous media at the pore scale. Colloids Surf., A 427, 33–40 (2013)

    Article  Google Scholar 

  • Seghir, A., Benamar, A., Wang, H.: Effects of fine particles on the suffusion of cohesionless soils. Experiments and modeling. Transp. Porous Media 103(2), 233–247 (2014)

    Article  Google Scholar 

  • Shabani, A., Sisakhti, H., Sheikhi, S., Barzegar, F.: A reactive transport approach for modeling scale formation and deposition in water injection wells. J. Petrol. Sci. Eng. 190, 107031 (2020)

    Article  Google Scholar 

  • Shapiro, A., Wesselingh, J.: Gas transport in tight porous media: gas kinetic approach. Chem. Eng. J. 142(1), 14–22 (2008)

    Article  Google Scholar 

  • Sharma, M.M., Chamoun, H., Sarma, D.S.R., Schechter, R.S.: Factors controlling the hydrodynamic detachment of particles from surfaces. J. Colloid Interface Sci. 149(1), 121–134 (1992)

    Article  Google Scholar 

  • Smith, I.M., Griffiths, D.V., Margetts, L.: Programming the finite element method. Wiley, New York (2013)

    Google Scholar 

  • Tufenkji, N.: Colloid and microbe migration in granular environments: a discussion of modelling methods. In: Colloidal transport in porous media, pp. 119–142. Springer, Berlin (2007)

  • Wang, H.F.: Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton (2017)

    Google Scholar 

  • Wang, Y., Papamichos, E.: Conductive heat flow and thermally induced fluid flow around a well bore in a poroelastic medium. Water Resour. Res. 30(12), 3375–3384 (1994). https://doi.org/10.1029/94wr01774

    Article  Google Scholar 

  • Yang, Y., Siqueira, F.D., Vaz, A.S., You, Z., Bedrikovetsky, P.: Slow migration of detached fine particles over rock surface in porous media. J. Nat. Gas Sci. Eng. 34, 1159–1173 (2016)

    Article  Google Scholar 

  • You, Z., Badalyan, A., Bedrikovetsky, P.: Size-exclusion colloidal transport in porous media-stochastic modeling and experimental study. SPE J. 18(04), 620–633 (2013)

    Article  Google Scholar 

  • You, Z., Badalyan, A., Yang, Y., Bedrikovetsky, P., Hand, M.: Fines migration in geothermal reservoirs: laboratory and mathematical modelling. Geothermics 77, 344–367 (2019)

    Article  Google Scholar 

  • You, Z., Bedrikovetsky, P., Badalyan, A., Hand, M.: Particle mobilization in porous media: temperature effects on competing electrostatic and drag forces. Geophys. Res. Lett. 42(8), 2852–2860 (2015)

    Article  Google Scholar 

  • You, Z., Yang, Y., Badalyan, A., Bedrikovetsky, P., Hand, M.: Mathematical modelling of fines migration in geothermal reservoirs. Geothermics 59, 123–133 (2016)

    Article  Google Scholar 

  • Yuan, H., Shapiro, A.A.: A mathematical model for non-monotonic deposition profiles in deep bed filtration systems. Chem. Eng. J. 166(1), 105–115 (2011)

    Article  Google Scholar 

Download references

Funding

The funding used for this study was research assistantship provided to the first author of the manuscript by the Department of Civil, Structural, and Environmental Engineering at the University at Buffalo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamelia Atefi-Monfared.

Ethics declarations

Conflict of interest

Not applicable.

Ethical Approval

The funding used for this study was research assistantship provided by the Department of Civil, Structural, and Environmental Engineering at the University at Buffalo. The authors hereby note no potential conflicts of interest. The research presented in this study did not involve Human Participants and/or Animals.

Consent to Participate

All authors whose names appear on the submission: (1) made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; (2) drafted the work or revised it critically for important intellectual content; (3) approved the version to be published; and (4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Consent for Publication

All authors agree with the content and that all gave explicit consent to submit. “Consent of responsible authorities in organization” does not apply to our work, as the funding was research assistantship provided by university.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The shape functions \(N_{i}\) (\(i = 1,2 \ldots 8\)) for 8-node rectangular quadrilateral elements are

$$\left\{ {\begin{array}{*{20}l} {N_{1}^{8} = \frac{1}{4}\left( {1 - \xi } \right)\left( {1 - \eta } \right)\left( { - \xi - \eta - 1} \right)} \hfill \\ {N_{2}^{8} = \frac{1}{2}\left( {1 - \xi } \right)\left( {1 - \eta^{2} } \right)} \hfill \\ {N_{3}^{8} = \frac{1}{4}\left( {1 - \xi } \right)\left( {1 + \eta } \right)\left( { - \xi + \eta - 1} \right)} \hfill \\ {N_{4}^{8} = \frac{1}{2}\left( {1 - \xi^{2} } \right)\left( {1 + \eta } \right)} \hfill \\ {N_{5}^{8} = \frac{1}{4}\left( {1 + \xi } \right)\left( {1 + \eta } \right)\left( {\xi + \eta - 1} \right)} \hfill \\ {N_{6}^{8} = \frac{1}{2}\left( {1 + \xi } \right)\left( {1 - \eta^{2} } \right)} \hfill \\ {N_{7}^{8} = \frac{1}{4}\left( {1 + \xi } \right)\left( {1 - \eta } \right)\left( {\xi - \eta - 1} \right)} \hfill \\ {N_{8}^{8} = \frac{1}{2}\left( {1 - \xi^{2} } \right)\left( {1 - \eta } \right)} \hfill \\ \end{array} } \right.$$
(34)

where \(\xi\) and \(\eta\) are dimensions in the local coordinates.

The shape functions \(N_{i}\) (\(i = 1,2,3,4\)) for 4-node rectangular quadrilateral elements are

$$\begin{array}{*{20}c} {N_{1}^{4} = \frac{1}{4}\left( {1 - \xi } \right)\left( {1 - \eta } \right),} & {N_{2}^{4} = \frac{1}{4}\left( {1 - \xi } \right)\left( {1 + \eta } \right),} & {N_{3}^{4} = \frac{1}{4}\left( {1 + \xi } \right)\left( {1 + \eta } \right),} & {N_{4}^{4} = \frac{1}{4}\left( {1 + \xi } \right)\left( {1 - \eta } \right)} \\ \end{array}$$
(35)

The shape functions of solid displacement, pore pressure and fine particle are given by

$$\left\{ {\begin{array}{*{20}l} {{\mathbf{N}}_{u} = \left[ {\begin{array}{*{20}c} {N_{1}^{8} } & {N_{2}^{8} } & {N_{3}^{8} } & {N_{4}^{8} } & {N_{5}^{8} } & {N_{6}^{8} } & {N_{7}^{8} } & {N_{8}^{8} } \\ \end{array} } \right]} \hfill \\ {{\mathbf{N}}_{p} = {\mathbf{N}}_{F} = \left[ {\begin{array}{*{20}c} {N_{1}^{4} } & {N_{2}^{4} } & {N_{3}^{4} } & {N_{4}^{4} } \\ \end{array} } \right]} \hfill \\ \end{array} } \right.$$
(36)

The strain–displacement transformation matrix \({\mathbf{B}}\) is

$$B = \left[ {\begin{array}{*{20}c} {\frac{{\partial N_{1}^{8} }}{\partial x}} & 0 & {\frac{{\partial N_{2}^{8} }}{\partial x}} & 0 & \cdots & {\frac{{\partial N_{8}^{8} }}{\partial x}} & 0 \\ 0 & {\frac{{\partial N_{1}^{8} }}{\partial y}} & 0 & {\frac{{\partial N_{2}^{8} }}{\partial y}} & \cdots & 0 & {\frac{{\partial N_{8}^{8} }}{\partial y}} \\ {\frac{{\partial N_{1}^{8} }}{\partial y}} & {\frac{{\partial N_{1}^{8} }}{\partial x}} & {\frac{{\partial N_{2}^{8} }}{\partial y}} & {\frac{{\partial N_{2}^{8} }}{\partial x}} & \cdots & {\frac{{\partial N_{8}^{8} }}{\partial y}} & {\frac{{\partial N_{8}^{8} }}{\partial x}} \\ \end{array} } \right]$$
(37)

Similarly, the matrices \(\nabla {\mathbf{N}}_{p}\) and \(\nabla {\mathbf{N}}_{F}\) are defined as

$$\nabla {\mathbf{N}}_{p} = \nabla {\mathbf{N}}_{F} = \left[ {\begin{array}{*{20}c} {\frac{{\partial N_{1}^{4} }}{\partial x}} & {\frac{{\partial N_{2}^{4} }}{\partial x}} & {\frac{{\partial N_{3}^{4} }}{\partial x}} & {\frac{{\partial N_{4}^{4} }}{\partial x}} \\ {\frac{{\partial N_{1}^{4} }}{\partial y}} & {\frac{{\partial N_{2}^{4} }}{\partial y}} & {\frac{{\partial N_{3}^{4} }}{\partial y}} & {\frac{{\partial N_{4}^{4} }}{\partial y}} \\ \end{array} } \right]$$
(38)

In Eqs. (37) and (38), the shape function derivatives with respect to the global coordinates is defined as

$$\begin{array}{*{20}c} {\left[ {\begin{array}{*{20}c} {\frac{{\partial N_{i}^{8} }}{\partial x}} \\ {\frac{{\partial N_{i}^{8} }}{\partial y}} \\ \end{array} } \right] = {\mathbf{J}}^{ - 1} \left[ {\begin{array}{*{20}c} {\frac{{\partial N_{i}^{8} }}{\partial \xi }} \\ {\frac{{\partial N_{i}^{8} }}{\partial \eta }} \\ \end{array} } \right]} & \& & {\left[ {\begin{array}{*{20}c} {\frac{{\partial N_{j}^{4} }}{\partial x}} \\ {\frac{{\partial N_{j}^{4} }}{\partial y}} \\ \end{array} } \right] = {\mathbf{J}}^{ - 1} \left[ {\begin{array}{*{20}c} {\frac{{\partial N_{j}^{4} }}{\partial \xi }} \\ {\frac{{\partial N_{j}^{4} }}{\partial \eta }} \\ \end{array} } \right]} \\ \end{array}$$
(39)

where \(i = \begin{array}{*{20}c} {1,} & {2,} & \cdots & 8 \\ \end{array}\) and \(j = \begin{array}{*{20}c} {1,} & {2,} & {3,} & 4 \\ \end{array}\). \({\mathbf{J}}\) is the Jacobin matrix and defined as

$${\mathbf{J}} = \left[ {\begin{array}{*{20}c} {\frac{\partial x}{{\partial \xi }}} & {\frac{\partial y}{{\partial \xi }}} \\ {\frac{\partial x}{{\partial \eta }}} & {\frac{\partial y}{{\partial \eta }}} \\ \end{array} } \right]$$
(40)

where

$$\begin{array}{*{20}c} {\frac{\partial x}{{\partial \xi }} = \sum\limits_{i = 1}^{8} {\frac{{\partial N_{i}^{8} }}{\partial \xi } \times x_{i} } ,} & {\frac{\partial x}{{\partial \eta }} = \sum\limits_{i = 1}^{8} {\frac{{\partial N_{i}^{8} }}{\partial \eta } \times x_{i} } ,} & {\frac{\partial y}{{\partial \xi }} = \sum\limits_{i = 1}^{8} {\frac{{\partial N_{i}^{8} }}{\partial \xi } \times y_{i} } ,} & {\frac{\partial y}{{\partial \eta }} = \sum\limits_{i = 1}^{8} {\frac{{\partial N_{i}^{8} }}{\partial \eta } \times y_{i} } } \\ \end{array}$$
(41)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Atefi-Monfared, K. Injection-Induced Poroelastic Response of Porous Media Containing Fine Particles, Incorporating Particle Mobilization, Transport, and Straining. Transp Porous Med 137, 629–650 (2021). https://doi.org/10.1007/s11242-021-01580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01580-8

Keywords

Navigation