Akinlotan, O.: Proceedings of the geologists’ association porosity and permeability of the English (Lower Cretaceous) sandstones. Proc. Geol. Assoc. 127(6), 681–690 (2016)
Google Scholar
Akintunde, O.M., Knapp, C.C., Knapp, J.H.: Tectonophysics Tectonic significance of porosity and permeability regimes in the red beds formations of the South Georgia Rift Basin. Tectonophysics 632, 1–7 (2014)
Google Scholar
Al Ismail, M.I., Zoback, M.D.: Effects of rock mineralogy and pore structure on extremely low stress-dependent matrix permeability of unconventional shale gas and shale oil samples. R Soc. Philos. Trans. A. 374(20150428), 1–17 (2016)
Google Scholar
Al-Kharusi, A.S., Blunt, M.J.: Network extraction from sandstone and carbonate pore space images. J. Pet. Sci. Eng. 56(4), 219–231 (2007)
Google Scholar
Apostolopoulou, M., Day, R., Hull, R., Stamatakis, M., Striolo, A.: A kinetic Monte Carlo approach to study fluid transport in pore networks. J. Chem. Phys. 147(134703), 1–10 (2017)
Google Scholar
Apostolopoulou, M., Dusterhoft, R., Day, R., Stamatakis, M., Coppens, M.O., Striolo, A.: Estimating permeability in shales and other heterogeneous porous media: deterministic versus stochastic investigations. Int. J. Coal Geol. 205, 140–154 (2019a)
Google Scholar
Apostolopoulou, M., Santos, M.S., Hamza, M., et al.: Quantifying pore width effects on diffusivity via a novel 3D stochastic approach with input from atomistic molecular dynamics simulations. J. Chem. Theory Comput. 15(12), 6907–6922 (2019b)
Google Scholar
Archie, G.E.: Introduction to petrophysics of reservoir rocks. AAPG Bull. 34(5), 943–961 (1950)
Google Scholar
Backeberg, N.R., Iacoviello, F., Rittner, M., et al.: Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography. Sci. Rep. 13, 1–12 (2017)
Google Scholar
Bear, J.: Fluid and porous matrix properties. In: Dynamics of Fluids in Porous Media, pp. 27–57. Dover Publications, INC, New York (1972)
Beckingham, L., Peters, C., Um, W., Jones, K.W.B.L.: 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability. Adv Water Resour. 62, 1–12 (2013)
Google Scholar
Begg, S.H., King, P.R.: Modelling the Effects of Shales on Reservoir Performance: Calculation of Effective Vertical Permeability. In: SPE Reservoir Simulation Symposium, pp. 1–15, 10-13 February, Dallas, SPE-13529-MS (1985)
BP.: Statistical Review of World Energy, vol. 68 (2019)
Bui, T., Phan, A., Cole, D.R., Striolo, A.: Transport mechanism of guest methane in water-filled nanopores. J. Phys. Chem. C 121, 15675–15686 (2017a)
Google Scholar
Bui, T., Phan, A., Cole, D.R., Striolo, A.: Transport mechanism of guest methane in water-filled nanopores. J. Phys. Chem. C 121(29), 15675–15686 (2017b)
Google Scholar
Chalmers, G.R.L., Ross, D.J.K., Bustin, R.M.: Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada. Int J Coal Geol. 103, 120–131 (2012a)
Google Scholar
Chalmers, G.R., Bustin, R.M., Power, I.M.: Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. Am. Assoc. Pet. Geol. Bull. 96(6), 1099–1119 (2012b)
Google Scholar
Chen, S., Lee, E.K.C., Chang, Y.: Effect of the coordination number of the pore-network on the transport and deposition of particles in porous media. Sep. Purif. Technol. 30, 11–26 (2003)
Google Scholar
Civan, F.: Scale effect on porosity and permeability: kinetics, model, and correlation. AIChE J. 47(2), 59 (2001)
Google Scholar
Cortez-Montalvo, J., Inyang, U., Dusterhoft, R., Hu, D., Apostolopoulou, M.: Laboratory evaluation of apparent conductivity of ultra-fine particulates. In: SPE/AAPG/SEG Unconventional Resources Technology Conference Houston, Texas, 23-25 July URTeC-2902308-MS (2018)
Darby, M.T., Piccinin, S., Stamatakis, M.: First principles-based kinetic Monte Carlo simulation in catalysis. In: Physics of Surface, Interface and Cluster Catalysis. 2nd ed., pp. 1–38. IOP Publishing, Bristol (2016)
Davudov, D., Moghanloo, R.G., Yuan, B.: Impact of pore connectivity and topology on gas productivity in Barnett and Haynesville Shale plays. In: Unconventional Resources Technology Conference on Held San Antonio, Texas, USA, URTeC-2461331 (2016)
Davudov, D., Moghanloo, R.G.: Impact of pore compressibility and connectivity loss on shale permeability. Int. J. Coal Geol. 187, 98–113 (2018)
Google Scholar
Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 036307, 1–11 (2009)
Google Scholar
Dullien, F.A.: Single-phase transport phenomena in porous media. In: Porous Media: Fluid Transport and Pore Structure, 2nd edn., pp. 237–313. Academic Press, INC, Sab Diego (1992)
Energy Information Administration (EIA): Shale gas production. Nat. Gas. 20, 123–152 (2014)
Google Scholar
Flamm, M.H., Diamond, S.L., Sinno, T.: Lattice kinetic Monte Carlo simulations of convective-diffusive systems. J. Chem. Phys. 130(9), 53 (2009)
Google Scholar
Franco, L.F.M., Castier, M., Economou, I.G.: Anisotropic parallel self-diffusion coefficients near the calcite surface: a molecular dynamics study. J. Chem. Phys. 145(8), 12 (2016)
Google Scholar
Guo, P.: Dependency of tortuosity and permeability of porous media on directional distribution of pore voids. Transp. Porous Media 95(2), 285–303 (2012)
Google Scholar
Hu, Q., Ewing, R.P., Rowe, H.D.: Low nanopore connectivity limits gas production in Barnett Formation. J. Geophys. Res. Solid Earth. 5, 120 (2015)
Google Scholar
Inyang, U., Cortez-Montalvo, J., Dusterhoft, R., Apostolopoulou, M., Striolo, A., Stamatakis, M.: A kinetic Monte Carlo study to investigate the effective permeability and conductivity of microfractures within unconventional reservoirs. In: SPE Oklahoma City Oil Gas Symposium held Oklahoma City, Oklahoma, 9-10 April SPE-195220-MS (2019)
Jamialahmadi, M., Javadpour, F.G.: Relationship of permeability, porosity and depth using an artificial neural network. J. Pet. Sci. Eng. 26, 235–239 (2000)
Google Scholar
Jansen, A.P.J.: An Introduction To Monte Carlo Simulations of Surface Reactions (2008)
Jaripatke, O.A., Barman, I., Ndungu, J.G., Schein, G.W., Flumerfelt, R.W., Burnett, N.: Review of permian completion designs and results. In: SPE Annual Technical Conference and Exhibition held Dallas, Texas, 24-26 Sept SPE-191560-MS (2018)
Jarvie, D.M.: Shale resource systems for oil and gas: part 1-shale-gas resource systems. AAPG Mem. 97, 69–87 (2012)
Google Scholar
Jiang, Z., van Dijke, M.I.J., Wu, K., Couples, G.D., Sorbie, K.S., Ma, J.: Stochastic pore network generation from 3D rock images. Transp. Porous Media 94(2), 571–593 (2012)
Google Scholar
Katsube, T., Issler, D., Cox, W.: Shale Permeability and Its Relation to Pore-Size Distribution. Canadian Government Publishing (1998)
Katz, A.J., Thompson, A.H.: Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54(12), 1325–1328 (1985)
Google Scholar
King, G.E., Rainbolt, M.F., Swanson, C., Corporation, A.: Frac hit induced production losses : evaluating root causes, damage location, possible prevention methods and success of remedial treatments. In: SPE Annual Technical Conference and Exhibition Held San Antonio, Texas, USA, 9-11 October SPE-187192-MS (2017)
King, H.E., Eberle, A.P.R., Walters, C., Kliewer, C.E., Ertas, D., Huynh, C.: Pore architecture and connectivity in gas shale. Energy Fuels 29, 1375–1390 (2015)
Google Scholar
Kwon, O., Kronenberg, A.K., Gangi, A.F., Johnson, B., Herbert, B.E.: Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading. J. Geophys. Res. B Solid Earth. 109(10), 1–19 (2004)
Google Scholar
Le, T.T.B., Striolo, A., Gautam, S.S., Cole, D.R.: Propane-water mixtures confined within cylindrical silica nanopores: structural and dynamical properties probed by molecular dynamics. Langmuir 33(42), 11310–11320 (2017)
Google Scholar
Magara, K.: Porosity-Permeability relationship in Shales. In: Compaction and Fluid Migration, pp. 201–216. Elsevier Inc. (1978)
Mandelbrot, B.: The Fractal Geometry of Nature. W. H. Freeman and Company, San Francisco (1985)
Google Scholar
Mata, V.G., Lopes, J.C.B., Dias, M.M.: Porous media characterization using mercury porosimetry simulation. 2. An iterative method for the determination of the real pore size distribution and the mean coordination number. Ind. Eng. Chem. Res. 40, 4836–4843 (2001)
Google Scholar
Matsumoto, M., Nishimura, T.: Dynamic creation of pseudorandom number generators. Monte Carlo Quasi-Monte Carlo Methods. 1(1), 56–69 (2000)
Google Scholar
Merriman, R.J., Highley, D.E., Cameron, D.G.: Definition and Characteristics of Very-Fine Grained Sedimentary Rocks: Clay, Mudstone, Shale and Slate (2003)
Nelson, P.H.: Pore-throat sizes in sandstones, tight sandstones, and shales. Am. Assoc. Pet. Geol. Bull. 93(3), 329–340 (2009)
Google Scholar
Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70(62), 1–2 (2004)
Google Scholar
Oluwadebi, A.G., Taylor, K.G., Ma, L.: A case study on 3D characterisation of pore structure in a tight sandstone gas reservoir: the Collyhurst Sandstone, East Irish Sea Basin, northern England. J. Nat. Gas Sci. Eng. 68(102917), 1–11 (2019). https://doi.org/10.1016/j.jngse.2019.102917
Article
Google Scholar
Pape, H., Clauser, I.C., Iffland, J.: Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model. Pure. appl. Geophys. 157, 603–619 (2000)
Google Scholar
Peng, S., Hu, Q., Dultz, S., Zhang, M.: Using X-ray computed tomography in pore structure characterization for a Berea sandstone: resolution effect. J. Hydrol. 472–473, 254–261 (2012)
Google Scholar
Phan, A., Cole, D.R., Wei, R.G., Dzubiella, J., Striolo, A.: Confined water determines transport properties of guest molecules in narrow pores. ACS Nano 10(8), 7646–7656 (2016a)
Google Scholar
Phan, A., Cole, D.R., Striolo, A.: Factors governing the behaviour of aqueous methane in narrow pores. Philos. Trans. R Soc. A. 374, 1–13 (2016b)
Google Scholar
Prasianakis, N.I., Gatschet, M., Abbasi, A., Churakov, S.V.: Upscaling strategies of porosity-permeability correlations in reacting environments from pore-scale simulations. Geofluids 2018, 1–9 (2018)
Google Scholar
Rabbani, A., Ayatollahi, S., Kharrat, R., Dashti, N.: Advances in water resources estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image. Adv. Water Resour. 94, 264–277 (2016)
Google Scholar
Raoof, A., Majid, Hassanizadeh S.: A new method for generating pore-network models of porous media. Transp. Porous Media 81(3), 391–407 (2010)
Google Scholar
Rieu, M., Sposito, G.: Fractal fragmentation, soil porosity, and soil water properties: I. Theory. Soil Sci. Soc. Am. J. 55, 1231–1238 (1991)
Google Scholar
Sahimi, M.: Characterization of the morphology of porous media. In: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, 2nd ed., pp. 39–108. Wiley-VCH Verlag GmbH & Co. KGa, Leipzig (2011)
Shen, L., Chen, Z.: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62(14), 3748–3755 (2007)
Google Scholar
Shen, X., Li, L., Cui, W., Feng, Y.: Improvement of fractal model for porosity and permeability in porous materials. Int. J. Heat Mass Transf. 121, 1307–1315 (2018)
Google Scholar
Sheng, G., Javadpour, F., Su, Y.: Dynamic porosity and apparent permeability in porous organic matter of shale gas reservoirs. Fuel 251(February), 341–351 (2019)
Google Scholar
Thakur, P.: Porosity and permeability of coal. In: Advanced Reservoir and Production Engineering for Coal Bed Methane, pp. 33–49. Elsevier Inc., Cambridge (2017)
Trinh, S., Locke, B.R., Arce, P.: Effective diffusivity tensors of point-like molecules in anisotropic porous media by Monte Carlo simulation. Transp. Porous Media 47(3), 279–293 (2002)
Google Scholar
Tsakiroglou, C.D., Payatakes, A.C.: Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation. Adv. Water Resour. 23, 773–789 (2000)
Google Scholar
Van Kampen, N.: The Master Equation. In: Stochastic Processes in Physics and Chemistry, pp. 96–133 (2007)
Vasilyev, L., Raoof, A., Nordbotten, J.M.: Effect of mean network coordination number on dispersivity characteristics. Transp. Porous Media 95, 447–463 (2012)
Google Scholar
Wang, S., Feng, Q., Zha, M., Javadpour, F., Hu, Q.: Supercritical methane diffusion in shale nanopores: effects of pressure, mineral types, and moisture content. Energy Fuels 32(1), 169–180 (2018)
Google Scholar
Yang, Y., Aplin, A.C.: Permeability and petrophysical properties of 30 natural mudstones. J. Geophys. Res. Solid Earth. 112(3), 65 (2007)
Google Scholar
Yu, B., Li, J.: Some fractal characters of porous media. Fractals. 9(3), 365–372 (2001)
Google Scholar
Yu, W., Xu, Y., Weijermars, R., Wu, K., Sepehrnoori, K.: Impact of well interference on shale oil production performance : a numerical model for analyzing pressure response of fracture hits with complex geometries. In: SPE Annual Technical Conference and Exhibition held Woodlands, Texas, USA, 24–26 January SPE-184825-MS (2017)
Zhang, H., Liu, J., Elsworth, D.: How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model. AAPG Bull. 45, 1226–1236 (2008)
Google Scholar
Zhang, Y., Bao, Z., Yang, F., Mao, S., Song, J., Jiang, L.: The controls of pore-throat structure on fluid performance in tight clastic rock reservoir: a case from the upper Triassic of Chang 7 Member, Ordos Basin, China. Geofluids. 3403026, 15–24 (2018)
Google Scholar
Zou, C.: Shale gas. In: Unconventional Petroleum Geology, pp. 149–190. Elsevier Inc., San Diego (2013)