Skip to main content
Log in

Opportunities for Particles and Particle Suspensions to Experience Enhanced Transport in Porous Media: A Review

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Understanding the fate of colloids in porous media plays a vital role in applications such as enhanced oil recovery (EOR), colloid-facilitated transport or groundwater remediation. Although considerable research has been dedicated toward the retention characteristics of colloids over the last couple of years, less attention has been paid to their transport characteristics in porous media, and hence little knowledge is available on how colloids flow through a medium of complex channel alignment. This lack of understanding becomes apparent for nanoparticle applications in EOR, where relatively concentrated nanofluids are injected into low-permeable sedimentary rocks. Here, two flow phenomena arise: an earlier breakthrough of nanoparticles compared to a conservative tracer and an apparent slip effect, by which the measured pressure drop is less than that calculated via Darcy’s law. The underlying mechanism that couples both phenomena is typically attributed to the depleted layer effect—a theory that presumes that the nanoparticles are excluded from the low-velocity region near a wall at a distance typically larger than the nanoparticles. This depletion causes the particles to move on average faster than the bulk fluid containing them and causes that fluid to exhibit a viscosity lower than when measured in a viscometer. However, the depleted layer theory is not predicated on any direct observation during flow in porous media. In a broader sense, this review paper not only aims at finding answers as to why particles drive away from a wall so that a depleted layer occurs. It also questions the aforementioned hypothesis that early breakthrough and reduced apparent viscosity can be interrelated, and assesses whether each phenomenon should be treated independently. In a strict sense, this review presents both potential mechanisms of particles flow enhancement and how its manifestation can be hindered, as well as opportunities for particle suspensions to experience enhanced flow as a whole. It is meant to be an overview for readers who are not familiar with the characteristic transport features of particles. Accordingly, this review highlights also outstanding challenges in allocating the underlying mechanisms behind the flow enhancement phenomena and shows thereby future research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Salam, A., Chrysikopoulos, C.V.: Modeling of colloid and colloid-facilitated contaminant transport in a two-dimensional fracture with spatially variable aperture. Transp. Porous Media 20(3), 197–221 (1995)

    Article  Google Scholar 

  • Ackers, G.K.: Molecular exclusion and restricted diffusion processes in molecular-sieve chromatography. Biochemistry 3(5), 723–730 (1964)

    Article  Google Scholar 

  • Ahfir, N.-D., Wang, H.Q., Benamar, A., Alem, A., Massei, N., Dupont, J.-P.: Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol. J. 15(4), 659–668 (2007)

    Article  Google Scholar 

  • Ahfir, N.-D., Benamar, A., Alem, A., Wang, H.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transp. Porous Media 76(2), 289 (2009)

    Article  Google Scholar 

  • Ahmed, M., Eslamian, M.: Laminar forced convection of a nanofluid in a microchannel: effect of flow inertia and external forces on heat transfer and fluid flow characteristics. Appl. Therm. Eng. 78, 326–338 (2015)

    Article  Google Scholar 

  • Ahuja, A., Singh, A.: Slip velocity of concentrated suspensions in Couette flow. J. Rheol. 53(6), 1461–1485 (2009)

    Article  Google Scholar 

  • Alaskar, M., Li, K., Horne, R.: Silica particles mobility through fractured rock. Arab. J. Sci. Eng. 40(4), 1205–1222 (2015)

    Article  Google Scholar 

  • Albarran, N., Missana, T., Alonso, U., García-Gutiérrez, M., López, T.: Analysis of latex, gold and smectite colloid transport and retention in artificial fractures in crystalline rock. Colloids Surf. A 435, 115–126 (2013)

    Article  Google Scholar 

  • Aminfar, H., Razmara, N., Mohammadpourfard, M.: On flow characteristics of liquid–solid mixed-phase nanofluid inside nanochannels. Appl. Math. Mech. 35(12), 1541–1554 (2014)

    Article  Google Scholar 

  • Amini, H., Lee, W., Di Carlo, D.: Inertial microfluidic physics. Lab Chip 14(15), 2739–2761 (2014)

    Article  Google Scholar 

  • Andrade, J., Araújo, A., Vasconcelos, T., Herrmann, H.J.: Inertial capture in flow through porous media. Eur. Phys. J. B 64(3–4), 433–436 (2008)

    Article  Google Scholar 

  • Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235(1200), 67–77 (1956)

    Article  Google Scholar 

  • Ashrafmansouri, S.-S., Esfahany, M.N., Azimi, G., Etesami, N.: Experimental investigation of water self-diffusion coefficient and tracer diffusion coefficient of tert-butanol in water-based silica nanofluids. Int. J. Therm. Sci. 86, 166–174 (2014)

    Article  Google Scholar 

  • Asmolov, E.S.: The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 63–87 (1999)

    Article  Google Scholar 

  • Aubert, J.H., Tirrell, M.: Effective viscosity of dilute polymer solutions near confining boundaries. J. Chem. Phys. 77(1), 553–561 (1982)

    Article  Google Scholar 

  • Auset, M., Keller, A.A.: Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resour. Res. 40(3), w03503 (2004). https://doi.org/10.1029/2003WR002800

    Article  Google Scholar 

  • Avogadro, A., De Marsily, G.: The role of colloids in nuclear waste disposal. MRS Proc. 26, 495–505 (1983)

    Article  Google Scholar 

  • Azimi, S.S., Kalbasi, M.: A molecular dynamics simulation of brownian motion of a nanoparticle in a nanofluid. Nanoscale Microscale Thermophys. Eng. 21(4), 263–277 (2017). https://doi.org/10.1080/15567265.2017.1286420

    Article  Google Scholar 

  • Azizian, R., Doroodchi, E., Moghtaderi, B.: Effect of nanoconvection caused by Brownian motion on the enhancement of thermal conductivity in nanofluids. Ind. Eng. Chem. Res. 51(4), 1782–1789 (2011)

    Article  Google Scholar 

  • Babakhani, P., Bridge, J., Doong, R.-A., Phenrat, T.: Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: a state-of-the-science review. Adv. Colloid Interface Sci. 246, 75–104 (2017)

    Article  Google Scholar 

  • Bahiraei, M.: Studying nanoparticle distribution in nanofluids considering the effective factors on particle migration and determination of phenomenological constants by Eulerian–Lagrangian simulation. Adv. Powder Technol. 26(3), 802–810 (2015)

    Article  Google Scholar 

  • Bai, B., Xu, T., Guo, Z.: An experimental and theoretical study of the seepage migration of suspended particles with different sizes. Hydrogeol. J. 24(8), 2063–2078 (2016)

    Article  Google Scholar 

  • Baik, M.H., Hahn, P.S.: Radionuclide transport facilitated by polydispersed pseudo-colloids in the fractured rock media. J. Nucl. Sci. Technol. 34(1), 41–49 (1997)

    Article  Google Scholar 

  • Bales, R.C., Gerba, C.P., Grondin, G.H., Jensen, S.L.: Bacteriophage transport in sandy soil and fractured tuff. Appl. Environ. Microbiol. 55(8), 2061–2067 (1989)

    Google Scholar 

  • Ballesta, P., Petekidis, G., Isa, L., Poon, W., Besseling, R.: Wall slip and flow of concentrated hard-sphere colloidal suspensions. J. Rheol. 56(5), 1005–1037 (2012)

    Article  Google Scholar 

  • Banerjee, A., Kihm, K.D.: Experimental verification of near-wall hindered diffusion for the Brownian motion of nanoparticles using evanescent wave microscopy. Phys. Rev. E 72(4), 042101 (2005)

    Article  Google Scholar 

  • Barnes, H.A.: A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J. Nonnewton. Fluid Mech. 56(3), 221–251 (1995)

    Article  Google Scholar 

  • Bartelds, G., Bruining, J., Molenaar, J.: The Influence of Inaccessible and Excluded Pore Volume on Polymer Flooding. Ph.D. thesis. Technical University of Delft (1998)

  • Bartelds, G., Bruining, J., Molenaar, J.: The modeling of velocity enhancement in polymer flooding. Transp. Porous Media 26(1), 75–88 (1997)

    Article  Google Scholar 

  • Baumann, T., Toops, L., Niessner, R.: Colloid dispersion on the pore scale. Water Res. 44(4), 1246–1254 (2010)

    Article  Google Scholar 

  • Bayat, A.E., Junin, R., Shamshirband, S., Chong, W.T.: Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks. Scientific reports 5, 14264 (2015)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media, p. 584. American Elsevier Publishing Co., New York (1972)

    Google Scholar 

  • Becker, M.W., Reimus, P.W., Vilks, P.: Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests. Groundwater 37(3), 387–395 (1999)

    Article  Google Scholar 

  • Beiki, H., Esfahany, M.N., Etesami, N.: Laminar forced convective mass transfer of γ-Al2O3/electrolyte nanofluid in a circular tube. Int. J. Therm. Sci. 64, 251–256 (2013)

    Article  Google Scholar 

  • Benamar, A., Wang, H., Ahfir, N.-D., Alem, A., Masséi, N., Dupont, J.-P.: Effets de la vitesse d’écoulement sur le transport et la cinétique de dépôt de particules en suspension en milieu poreux saturé. C. R. Geosci. 337(5), 497–504 (2005)

    Article  Google Scholar 

  • Bennacer, L., Ahfir, N.-D., Bouanani, A., Alem, A., Wang, H.: Suspended particles transport and deposition in saturated granular porous medium: particle size effects. Transp. Porous Media 100(3), 377–392 (2013)

    Article  Google Scholar 

  • Bhattacharya, S., Navardi, S.: Radial lift on a suspended finite-sized sphere due to fluid inertia for low-Reynolds-number flow through a cylinder. J. Fluid Mech. 722, 159–186 (2013)

    Article  Google Scholar 

  • Bhattacharya, S., Gurung, D., Navardi, S.: Radial distribution and axial dispersion of suspended particles inside a narrow cylinder due to mildly inertial flow. Phys. Fluids 25(3), 033304 (2013)

    Article  Google Scholar 

  • Bike, S.G., Prieve, D.C.: Electrohydrodynamic lubrication with thin double layers. J. Colloid Interface Sci. 136(1), 95–112 (1990)

    Article  Google Scholar 

  • Bike, S., Prieve, D.: Electrohydrodynamics of thin double layers: a model for the streaming potential profile. J. Colloid Interface Sci. 154(1), 87–96 (1992)

    Article  Google Scholar 

  • Bike, S., Lazarro, L., Prieve, D.: Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall: I. Experiment. J. Colloid Interface Sci. 175(2), 411–421 (1995)

    Article  Google Scholar 

  • Blom, M.T., Chmela, E., Oosterbroek, R.E., Tijssen, R., Van Den Berg, A.: On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules. Anal. Chem. 75(24), 6761–6768 (2003)

    Article  Google Scholar 

  • Bos, J., Tijssen, R., Van Kreveld, M.E.: Determination of the dissociation temperature of organic micelles by microcapillary hydrodynamic chromatography. Anal. Chem. 61(13), 1318–1321 (1989)

    Article  Google Scholar 

  • Boschan, A., Aguirre, M., Gauthier, G.: Suspension flow: do particles act as mixers? Soft Matter 11(17), 3367–3372 (2015)

    Article  Google Scholar 

  • Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J.: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38, 12 (2002). https://doi.org/10.1029/2002WR001340

    Article  Google Scholar 

  • Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37(10), 2242–2250 (2003)

    Article  Google Scholar 

  • Bradford, S.A., Bettahar, M., Simunek, J., Van Genuchten, M.T.: Straining and attachment of colloids in physically heterogeneous porous media. Vadose Zone J. 3(2), 384–394 (2004)

    Article  Google Scholar 

  • Braun, A., Klumpp, E., Azzam, R., Neukum, C.: Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam. Sci. Total Environ. 535, 102–112 (2015)

    Article  Google Scholar 

  • Brenner, H.: The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16(3–4), 242–251 (1961)

    Article  Google Scholar 

  • Brenner, H., Adler, P.: Dispersion resulting from flow through spatially periodic porous media II. Surface and intraparticle transport. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 307(1498), 149–200 (1982)

    Article  Google Scholar 

  • Brenner, H., Gaydos, L.J.: The constrained Brownian movement of spherical particles in cylindrical pores of comparable radius: models of the diffusive and convective transport of solute molecules in membranes and porous media. J. Colloid Interface Sci. 58(2), 312–356 (1977)

    Article  Google Scholar 

  • Bretherton, F.P.: The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14(2), 284–304 (1962)

    Article  Google Scholar 

  • Buffham, B.: Model-independent aspects of hydrodynamic chromatography theory. J. Colloid Interface Sci. 67(1), 154–165 (1978)

    Article  Google Scholar 

  • Buongiorno, J.: Convective transport in nanofluids. J. Heat Transfer 128(3), 240–250 (2006)

    Article  Google Scholar 

  • Champ, D., Schroeter, J.: Bacterial transport in fractured rock–a field-scale tracer test at the Chalk River Nuclear Laboratories. Water Sci. Technol. 20(11–12), 81–87 (1988)

    Article  Google Scholar 

  • Chaoui, M., Feuillebois, F.: Creeping flow around a sphere in a shear flow close to a wall. Q. J. Mech. Appl. Math. 56(3), 381–410 (2003)

    Article  Google Scholar 

  • Chapman, B.K.: Shear-Induced Migration Phenomena in Concentrated Suspensions. Ph.D. thesis. University of Notre Dame (1990)

  • Chauveteau, G.: Rodlike polymer solution flow through fine pores: influence of pore size on rheological behavior. J. Rheol. 26(2), 111–142 (1982)

    Article  Google Scholar 

  • Chauveteau, G., Tirrell, M., Omari, A.: Concentration dependence of the effective viscosity of polymer solutions in small pores with repulsive or attractive walls. J. Colloid Interface Sci. 100(1), 41–54 (1984)

    Article  Google Scholar 

  • Chen, Y., Zhang, C., Shi, M., Peterson, G.: Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Phys. Rev. E 80(2), 026301 (2009)

    Article  Google Scholar 

  • Chmela, E., Tijssen, R., Blom, M.T., Gardeniers, H.J., van den Berg, A.: A chip system for size separation of macromolecules and particles by hydrodynamic chromatography. Anal. Chem. 74(14), 3470–3475 (2002)

    Article  Google Scholar 

  • Choi, S.U., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA (1995)

  • Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett. 87(15), 153107 (2005)

    Article  Google Scholar 

  • Chrysikopoulos, C.V., Abdel-Salam, A.: Modeling colloid transport and deposition in saturated fractures. Colloids Surf. A 121(2), 189–202 (1997)

    Article  Google Scholar 

  • Chrysikopoulos, C.V., Katzourakis, V.E.: Colloid particle size-dependent dispersivity. Water Resour. Res. 51(6), 4668–4683 (2015)

    Article  Google Scholar 

  • Chung, D.H.: Transport of Nanoparticles During Drainage and Imbibition Displacements in Porous Media. Ph.D. thesis, University of Texas (2013)

  • Cloitre, M., Bonnecaze, R.T.: A review on wall slip in high solid dispersions. Rheol. Acta 56(3), 283–305 (2017)

    Article  Google Scholar 

  • Corapcioglu, M.Y., Wang, S.: Dual-porosity groundwater contaminant transport in the presence of colloids. Water Resour. Res. 35(11), 3261–3273 (1999)

    Article  Google Scholar 

  • Corey, J.C., Kirkham, D., Nielsen, D.R.: The movement of chloride and nitrate through certain Iowa soils. Proc. Iowa Acad. Sci. 74(1), 130–141 (1967)

    Google Scholar 

  • Cornelis, G., Pang, L., Doolette, C., Kirby, J.K., McLaughlin, M.J.: Transport of silver nanoparticles in saturated columns of natural soils. Sci. Total Environ. 463, 120–130 (2013)

    Article  Google Scholar 

  • Cox, R.: Electroviscous forces on a charged particle suspended in a flowing liquid. J. Fluid Mech. 338, 1–34 (1997)

    Article  Google Scholar 

  • Creber, S.A., Pintelon, T.R., Johns, M.L.: Quantification of the velocity acceleration factor for colloidal transport in porous media using NMR. J. Colloid Interface Sci. 339(1), 168–174 (2009)

    Article  Google Scholar 

  • Crowe, C.T.: Multiphase Flow Handbook, vol. 59. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  • Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  • Cui, W., Bai, M., Lv, J., Zhang, L., Li, G., Xu, M.: On the flow characteristics of nanofluids by experimental approach and molecular dynamics simulation. Exp. Thermal Fluid Sci. 39, 148–157 (2012)

    Article  Google Scholar 

  • Cui, W., Shen, Z., Yang, J., Wu, S.: Effect of chaotic movements of nanoparticles for nanofluid heat transfer augmentation by molecular dynamics simulation. Appl. Therm. Eng. 76, 261–271 (2014)

    Article  Google Scholar 

  • Cui, W., Shen, Z., Yang, J., Wu, S.: Rotation and migration of nanoparticles for heat transfer augmentation in nanofluids by molecular dynamics simulation. Case Stud. Thermal Eng. 6, 182–193 (2015)

    Article  Google Scholar 

  • Cumbie, D., McKay, L.: Influence of diameter on particle transport in a fractured shale saprolite. J. Contam. Hydrol. 37(1), 139–157 (1999)

    Article  Google Scholar 

  • C-Y, Gu, Q-F, Di, H-P, Fang: Slip velocity model of porous walls absorbed by hydrophobic nanoparticles SiO2. J. Hydrodyn. Ser B 19(3), 365–371 (2007)

    Article  Google Scholar 

  • Dawson, R., Lantz, R.B.: Inaccessible pore volume in polymer flooding. Soc. Petrol. Eng. J. 12(05), 448–452 (1972)

    Article  Google Scholar 

  • De Beeck, J.O., De Malsche, W., Vangelooven, J., Gardeniers, H., Desmet, G.: Hydrodynamic chromatography of polystyrene microparticles in micropillar array columns. J. Chromatogr. A 1217(39), 6077–6084 (2010)

    Article  Google Scholar 

  • Dechadilok, P., Deen, W.M.: Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 45(21), 6953–6959 (2006)

    Article  Google Scholar 

  • Deen, W.: Hindered transport of large molecules in liquid-filled pores. AIChE J. 33(9), 1409–1425 (1987)

    Article  Google Scholar 

  • Di Carlo, D., Irimia, D., Tompkins, R.G., Toner, M.: Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. 104(48), 18892–18897 (2007)

    Article  Google Scholar 

  • Di Carlo, D., Edd, J.F., Humphry, K.J., Stone, H.A., Toner, M.: Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102(9), 094503 (2009)

    Article  Google Scholar 

  • Di, Q., Shen, C., Wang, Z., Jing, B., Gu, C., Qian, Y.: Innovative drag reduction of flow in rock. In: Paper Presented at the International Oil and Gas Conference and Exhibition in China, Beijing, 8–10 June. Society of Petroleum Engineers. SPE-130994-MS (2010)

  • DiMarzio, E., Guttman, C.: Separation by flow. Macromolecules 3(2), 131–146 (1970)

    Article  Google Scholar 

  • Ding, Y., Wen, D.: Particle migration in a flow of nanoparticle suspensions. Powder Technol. 149(2), 84–92 (2005)

    Article  Google Scholar 

  • Dodds, J.: La chromatographie hydrodynamique. Analusis 10(3), 109–119 (1982)

    Google Scholar 

  • Dong, H., Onstott, T.C., DeFlaun, M.F., Fuller, M.E., Scheibe, T.D., Streger, S.H., Mailloux, B.J.: Relative dominance of physical versus chemical effects on the transport of adhesion-deficient bacteria in intact cores from South Oyster, Virginia. Environ. Sci. Technol. 36(5), 891–900 (2002)

    Article  Google Scholar 

  • Dosramos, J.G., Silebi, C.A.: An analysis of the separation of submicron particles by capillary hydrodynamic fractionation (CHDF). J. Colloid Interface Sci. 133(2), 302–320 (1989)

    Article  Google Scholar 

  • Eastman, J.A., Choi, S., Li, S., Yu, W., Thompson, L.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  • Eichmann, S.L., Anekal, S.G., Bevan, M.A.: Electrostatically confined nanoparticle interactions and dynamics. Langmuir 24(3), 714–721 (2008)

    Article  Google Scholar 

  • El Kissi, N., Leger, L., Piau, J.-M., Mezghani, A.: Effect of surface properties on polymer melt slip and extrusion defects. J. Nonnewton. Fluid Mech. 52(2), 249–261 (1994)

    Article  Google Scholar 

  • Ellis, J.S., Thompson, M.: Slip and coupling phenomena at the liquid–solid interface. Phys. Chem. Chem. Phys. 6(21), 4928–4938 (2004)

    Article  Google Scholar 

  • Enfield, C.G., Bengtssona, G.: Macromolecular transport of hydrophobic contaminants in aqueous environments. Groundwater 26(1), 64–70 (1988)

    Article  Google Scholar 

  • Enfield, C.G., Bengtsson, G., Lindqvist, R.: Influence of macromolecules on chemical transport. Environ. Sci. Technol. 23(10), 1278–1286 (1989)

    Article  Google Scholar 

  • Evans, W., Fish, J., Keblinski, P.: Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett. 88(9), 093116 (2006)

    Article  Google Scholar 

  • Fallah, H., Fathi, H.B., Mohammadi, H.: The mathematical model for particle suspension flow through porous medium. Geomaterials 2(03), 57 (2012)

    Article  Google Scholar 

  • Fang, X., Xuan, Y., Li, Q.: Experimental investigation on enhanced mass transfer in nanofluids. Appl. Phys. Lett. 95(20), 203108 (2009)

    Article  Google Scholar 

  • Fang, J., Wang, M.-H., Lin, D.-H., Shen, B.: Enhanced transport of CeO2 nanoparticles in porous media by macropores. Sci. Total Environ. 543, 223–229 (2016)

    Article  Google Scholar 

  • Feng, X., Johnson, D.W.: Mass transfer in SiO2 nanofluids: a case against purported nanoparticle convection effects. Int. J. Heat Mass Transf. 55(13), 3447–3453 (2012)

    Article  Google Scholar 

  • Feng, J., Hu, H.H., Joseph, D.D.: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J. Fluid Mech. 277, 271–301 (1994)

    Article  Google Scholar 

  • Fischer, C.-H., Giersig, M.: Analysis of colloids: VII. Wide-bore hydrodynamic chromatography, a simple method for the determination of particle size in the nanometer size regime. J. Chromatogr. A 688(1–2), 97–105 (1994)

    Article  Google Scholar 

  • Fletcher, A., Flew, S., Lamb, S., Lund, T., Bjornestad, E., Stavland, A., Gjovikli, N.: Measurements of polysaccharide polymer properties in porous media. In: SPE International Symposium on Oilfield Chemistry, Anaheim, USA, 20–22 February (1991)

  • Foster, S.S.: The Chalk groundwater tritium anomaly—a possible explanation. J. Hydrol. 25(1–2), 159–165 (1975)

    Article  Google Scholar 

  • Frey, J., Schmitz, P., Dufreche, J., Pinheiro, I.G.: Particle deposition in porous media: analysis of hydrodynamic and weak inertial effects. Transp. Porous Media 37(1), 25–54 (1999)

    Article  Google Scholar 

  • Gadala-Maria, F., Acrivos, A.: Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24(6), 799–814 (1980)

    Article  Google Scholar 

  • Gerardi, C., Cory, D., Buongiorno, J., Hu, L.-W., McKrell, T.: Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Appl. Phys. Lett. 95(25), 253104 (2009)

    Article  Google Scholar 

  • Ghosh, S., van den Ende, D., Mugele, F., Duits, M.H.: Apparent wall-slip of colloidal hard-sphere suspensions in microchannel flow. Colloids Surf. A 491, 50–56 (2016)

    Article  Google Scholar 

  • Ginn, T.R.: Comment on “Stochastic analysis of virus transport in aquifers”, by Linda L. Campbell Rehmann, Claire Welty, and Ronald W. Harvey. Water Resour. Res. 36(7), 1981–1982 (2000)

    Article  Google Scholar 

  • Ginn, T.R.: A travel time approach to exclusion on transport in porous media. Water Resour. Res. 38(4), 12 (2002)

    Article  Google Scholar 

  • Ginn, T.R., Wood, B.D., Nelson, K.E., Scheibe, T.D., Murphy, E.M., Clement, T.P.: Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25(8–12), 1017–1042 (2002)

    Article  Google Scholar 

  • Goharrizi, B.A.: Experimental Measurement of Sweep Efficiency during Multi-Phase Displacement in the Presence of Nanoparticles. Ph.D. thesis. University of Texas at Austin (2013)

  • Goldman, A., Cox, R., Brenner, H.: Slow viscous motion of a sphere parallel to a plane wall—II. Couette flow. Chem. Eng. Sci. 22(4), 653–660 (1967)

    Article  Google Scholar 

  • Gondouin, M., Scala, C.: Streaming potential and the SP log. Soc. Pet. Eng. J. SPE-864-G (1958)

  • Griffiths, I., Stone, H.: Axial dispersion via shear-enhanced diffusion in colloidal suspensions. EPL (Europhys. Lett.) 97, 58005 (2012)

    Article  Google Scholar 

  • Grindrod, P.: The impact of colloids on the migration and dispersal of radionuclides within fractured rock. J. Contam. Hydrol. 13(1–4), 167–181 (1993)

    Article  Google Scholar 

  • Grindrod, P., Edwards, M.S., Higgo, J.J., Williams, G.M.: Analysis of colloid and tracer breakthrough curves. J. Contam. Hydrol. 21(1–4), 243–253 (1996)

    Article  Google Scholar 

  • Grolimund, D., Elimelech, M., Borkovec, M., Barmettler, K., Kretzschmar, R., Sticher, H.: Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol. 32(22), 3562–3569 (1998)

    Article  Google Scholar 

  • Gvirtzman, H., Gorelick, S.: Dispersion and advection in unsaturated porous media enhanced by anion exclusion. Nature 352(6338), 793 (1991)

    Article  Google Scholar 

  • Gvirtzman, H., Ronen, D., Magaritz, M.: Anion exclusion during transport through the unsaturated zone. J. Hydrol. 87(3–4), 267–283 (1986)

    Article  Google Scholar 

  • Hamaker, K., Ladisch, M.: Intraparticle flow and plate height effects in liquid chromatography stationary phases. Sep. Purif. Methods 25(1), 47–83 (1996)

    Article  Google Scholar 

  • Hampton, R., Mammoli, A., Graham, A., Tetlow, N., Altobelli, S.: Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41(3), 621–640 (1997)

    Article  Google Scholar 

  • Han, M., Kim, C., Kim, M., Lee, S.: Particle migration in tube flow of suspensions. J. Rheol. 43(5), 1157–1174 (1999)

    Article  Google Scholar 

  • Harter, T., Wagner, S., Atwill, E.R.: Colloid transport and filtration of Cryptosporidium parvum in sandy soils and aquifer sediments. Environ. Sci. Technol. 34(1), 62–70 (2000)

    Article  Google Scholar 

  • Harvey, R.W.: Microorganisms as tracers in groundwater injection and recovery experiments: a review. FEMS Microbiol. Rev. 20(3–4), 461–472 (1997)

    Article  Google Scholar 

  • Harvey, R.W., George, L.H., Smith, R.L., LeBlanc, D.R.: Transport of microspheres and indigenous bacteria through a sandy aquifer: results of natural- and forced-gradient tracer experiments. Environ. Sci. Technol. 23(1), 51–56 (1989)

    Article  Google Scholar 

  • Harvey, R.W., Kinner, N.E., MacDonald, D., Metge, D.W., Bunn, A.: Role of physical heterogeneity in the interpretation of small-scale laboratory and field observations of bacteria, microbial-sized microsphere, and bromide transport through aquifer sediments. Water Resour. Res. 29(8), 2713–2721 (1993)

    Article  Google Scholar 

  • Higgo, J., Williams, G., Harrison, I., Warwick, P., Gardiner, M., Longworth, G.: Colloid transport in a glacial sand aquifer. Laboratory and field studies. Colloids Surf. A Physicochem. Eng. Aspects 73, 179–200 (1993)

    Article  Google Scholar 

  • Ho, B., Leal, L.: Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65(2), 365–400 (1974)

    Article  Google Scholar 

  • Holloway, W., Aristoff, J.M., Stone, H.A.: Imbibition of concentrated suspensions in capillaries. Phys. Fluids 23(8), 081701 (2011)

    Article  Google Scholar 

  • Hood, K., Lee, S., Roper, M.: Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J. Fluid Mech. 765, 452–479 (2015)

    Article  Google Scholar 

  • Hotze, E.M., Phenrat, T., Lowry, G.V.: Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39(6), 1909–1924 (2010)

    Article  Google Scholar 

  • Huang, P., Breuer, K.S.: Direct measurement of anisotropic near-wall hindered diffusion using total internal reflection velocimetry. Phys. Rev. E 76(4), 046307 (2007)

    Article  Google Scholar 

  • Huang, L.R., Cox, E.C., Austin, R.H., Sturm, J.C.: Continuous particle separation through deterministic lateral displacement. Science 304(5673), 987–990 (2004)

    Article  Google Scholar 

  • Huber, F., Enzmann, F., Wenka, A., Bouby, M., Dentz, M., Schäfer, T.: Natural micro-scale heterogeneity induced solute and nanoparticle retardation in fractured crystalline rock. J. Contam. Hydrol. 133, 40–52 (2012)

    Article  Google Scholar 

  • Ibaraki, M., Sudicky, E.: Colloid-facilitated contaminant transport in discretely fractured porous media: 1. Numerical formulation and sensitivity analysis. Water Resour. Res. 31(12), 2945–2960 (1995)

    Article  Google Scholar 

  • Idogun, A.K., Iyagba, E.T., Ukwotije-Ikwut, R.P., Aseminaso, A.: A review study of oil displacement mechanisms and challenges of nanoparticle enhanced oil recovery. In: Paper Presented at the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 2–4 August. Society of Petroleum Engineers (2016)

  • Ikni, T., Benamar, A., Kadri, M., Ahfir, N.-D., Wang, H.-Q.: Particle transport within water-saturated porous media: effect of pore size on retention kinetics and size selection. C. R. Geosci. 345(9), 392–400 (2013)

    Article  Google Scholar 

  • Ilina, T., Panfilov, M., Buès, M., Panfilova, I.: A pseudo two-phase model of colloid transport in porous media. Transp. Porous Media 71(3), 311–329 (2008)

    Article  Google Scholar 

  • Iwata, M., Tanaka, T., Jami, M.: Application of electroosmosis for sludge dewatering—a review. Drying Technol. 31(2), 170–184 (2013)

    Article  Google Scholar 

  • James, S.C., Chrysikopoulos, C.V.: Transport of polydisperse colloids in a saturated fracture with spatially variable aperture. Water Resour. Res. 36(6), 1457–1465 (2000)

    Article  Google Scholar 

  • James, S.C., Chrysikopoulos, C.V.: Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture. J. Colloid Interface Sci. 263(1), 288–295 (2003)

    Article  Google Scholar 

  • James, R.V., Rubin, J.: Transport of chloride ion in a water-unsaturated soil exhibiting anion exclusion. Soil Sci. Soc. Am. J. 50(5), 1142–1149 (1986)

    Article  Google Scholar 

  • James, S.C., Bilezikjian, T.K., Chrysikopoulos, C.V.: Contaminant transport in a fracture with spatially variable aperture in the presence of monodisperse and polydisperse colloids. Stoch. Environ. Res. Risk Assess. 19(4), 266–279 (2005)

    Article  Google Scholar 

  • Jana, S., Kapoor, B., Acrivos, A.: Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles. J. Rheol. 39(6), 1123–1132 (1995)

    Article  Google Scholar 

  • Jang, S.P., Choi, S.U.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84(21), 4316–4318 (2004)

    Article  Google Scholar 

  • Jeffrey, R.C., Pearson, J.: Particle motion in laminar vertical tube flow. J. Fluid Mech. 22(4), 721–735 (1965)

    Article  Google Scholar 

  • Jen, C.-P., Li, S.-H.: Effects of hydrodynamic chromatography on colloid-facilitated migration of radionuclides in the fractured rock. Waste Manag 21(6), 499–509 (2001)

    Article  Google Scholar 

  • Jiang, G., Noonan, M.J., Buchan, G.D., Smith, N.: Transport and deposition of Bacillus subtilis through an intact soil column. Soil Res. 43(6), 695–703 (2005)

    Article  Google Scholar 

  • Jiemvarangkul, P., Zhang, W.-X., Lien, H.-L.: Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem. Eng. J. 170(2–3), 482–491 (2011)

    Article  Google Scholar 

  • Johnson, P.R., Sun, N., Elimelech, M.: Colloid transport in geochemically heterogeneous porous media: modeling and measurements. Environ. Sci. Technol. 30(11), 3284–3293 (1996)

    Article  Google Scholar 

  • Joo, S.H., Al-Abed, S.R., Luxton, T.: Influence of carboxymethyl cellulose for the transport of titanium dioxide nanoparticles in clean silica and mineral-coated sands. Environ. Sci. Technol. 43(13), 4954–4959 (2009)

    Article  Google Scholar 

  • Kalyon, D.M.: Apparent slip and viscoplasticity of concentrated suspensions. J. Rheol. 49(3), 621–640 (2005)

    Article  Google Scholar 

  • Kang, H.U., Kim, W.-G., Kim, S.H.: Effect of particle migration on the heat transfer of nanofluid. Korea Australia Rheol. J. 19(3), 99–107 (2007)

    Google Scholar 

  • Karnis, A., Goldsmith, H., Mason, S.: The flow of suspensions through tubes: V. Inertial effects. Can. J. Chem. Eng. 44(4), 181–193 (1966)

    Article  Google Scholar 

  • Kawale, D., Marques, E., Zitha, P.L., Kreutzer, M.T., Rossen, W.R., Boukany, P.E.: Elastic instabilities during the flow of hydrolyzed polyacrylamide solution in porous media: effect of pore-shape and salt. Soft Matter 13(4), 765–775 (2017)

    Article  Google Scholar 

  • Kazoe, Y., Mawatari, K., Kitamori, T.: Behavior of nanoparticles in extended nanospace measured by evanescent wave-based particle velocimetry. Anal. Chem. 87(8), 4087–4091 (2015)

    Article  Google Scholar 

  • Keblinski, P., Thomin, J.: Hydrodynamic field around a Brownian particle. Phys. Rev. E 73(1), 010502 (2006)

    Article  Google Scholar 

  • Keller, A.A., Auset, M.: A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions. Adv. Water Resour. 30(6–7), 1392–1407 (2007)

    Article  Google Scholar 

  • Keller, A.A., Sirivithayapakorn, S., Chrysikopoulos, C.V.: Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column. Water Resour. Res. 40(8), W08304 (2004)

    Article  Google Scholar 

  • Kim, S.H., Choi, S.R., Kim, D.: Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J. Heat Transfer 129(3), 298–307 (2007)

    Article  Google Scholar 

  • Knapp, R., Chiarappa, M., Durham, W.B.: An experimental exploration of the transport and capture of abiotic colloids in a single fracture. Water Resour. Res. 36(11), 3139–3149 (2000)

    Article  Google Scholar 

  • Koh, C.J., Hookham, P., Leal, L.: An experimental investigation of concentrated suspension flows in a rectangular channel. J. Fluid Mech. 266, 1–32 (1994)

    Article  Google Scholar 

  • Kok, P.H., Kazarian, S., Briscoe, B., Lawrence, C.: Effects of particle size on near-wall depletion in mono-dispersed colloidal suspensions. J. Colloid Interface Sci. 280(2), 511–517 (2004)

    Article  Google Scholar 

  • Kolodziej, E.: Transport mechanisms of Xanthan biopolymer solutions in porous media. In: Paper presented at the SPE Annual Technical Conference and Exhibition, Houston, USA, 2–5 October. Society of Petroleum Engineers. SPE-18090-MS (1988)

  • Konopinski, D., Hudziak, S., Morgan, R., Bull, P., Kenyon, A.: Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis. Forensic Sci. Int. 223(1), 245–255 (2012)

    Article  Google Scholar 

  • Kretzschmar, R., Sticher, H.: Colloid transport in natural porous media: influence of surface chemistry and flow velocity. Phys. Chem. Earth 23(2), 133–139 (1998)

    Article  Google Scholar 

  • Kretzschmar, R., Barmettler, K., Grolimund, D., Yan, Y.D., Borkovec, M., Sticher, H.: Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33(5), 1129–1137 (1997)

    Article  Google Scholar 

  • Krishnamurthy, S., Bhattacharya, P., Phelan, P., Prasher, R.: Enhanced mass transport in nanofluids. Nano Lett. 6(3), 419–423 (2006)

    Article  Google Scholar 

  • Krupp, H., Biggar, J., Nielsen, D.: Relative flow rates of salt and water in soil. Soil Sci. Soc. Am. J. 36(3), 412–417 (1972)

    Article  Google Scholar 

  • Kurosawa, S., James, S.C., Yui, M., Ibaraki, M.: Model analysis of the colloid and radionuclide retardation experiment at the Grimsel Test Site. J. Colloid Interface Sci. 298(1), 467–475 (2006)

    Article  Google Scholar 

  • Lauga, E.: Apparent slip due to the motion of suspended particles in flows of electrolyte solutions. Langmuir 20(20), 8924–8930 (2004)

    Article  Google Scholar 

  • Laumann, S., Micić, V., Lowry, G.V., Hofmann, T.: Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ. Pollut. 179, 53–60 (2013)

    Article  Google Scholar 

  • Lecourtier, J., Chauveteau, G.: Xanthan fractionation by surface exclusion chromatography. Macromolecules 17(7), 1340–1343 (1984)

    Article  Google Scholar 

  • Lee, S., Choi, S.-S., Li, S., Eastman, J.: Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 121(2), 280–289 (1999)

    Article  Google Scholar 

  • Leighton, D., Acrivos, A.: The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415–439 (1987)

    Article  Google Scholar 

  • Lhuillier, D.: Migration of rigid particles in non-Brownian viscous suspensions. Phys. Fluids 21(2), 023302 (2009)

    Article  Google Scholar 

  • Li, C., Peterson, G.: Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids). Int. J. Heat Mass Transf. 50(23), 4668–4677 (2007)

    Article  Google Scholar 

  • Lotsch, T., Muller, T., Pusch, G.: The effect of inaccessible pore volume on polymer coreflood experiments. In: Paper presented at the SPE Oilfield and Geothermal Chemistry Symposium, Arizona, USA, 9–11 April. Society of Petroleum Engineers. SPE-13590-MS (1985)

  • Lv, J., Cui, W., Bai, M., Li, X.: Molecular dynamics simulation on flow behavior of nanofluids between flat plates under shear flow condition. Microfluid. Nanofluid. 10(2), 475–480 (2011)

    Article  Google Scholar 

  • Lv, X., Gao, B., Sun, Y., Dong, S., Wu, J., Jiang, B., Shi, X.: Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media. Sci. Total Environ. 563, 987–995 (2016)

    Article  Google Scholar 

  • Lyon, M., Leal, L.: An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J. Fluid Mech. 363, 25–56 (1998)

    Article  Google Scholar 

  • Magee, B.R., Lion, L.W., Lemley, A.T.: Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media. Environ. Sci. Technol. 25(2), 323–331 (1991)

    Article  Google Scholar 

  • Malkovsky, V.I., Pek, A.A.: Effect of elevated velocity of particles in groundwater flow and its role in colloid-facilitated transport of radionuclides in underground medium. Transp. Porous Media 78(2), 277–294 (2009)

    Article  Google Scholar 

  • Martel, J.M., Toner, M.: Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng. 16, 371–396 (2014)

    Article  Google Scholar 

  • Massei, N., Lacroix, M., Wang, H.Q., Dupont, J.-P.: Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Contam. Hydrol. 57(1), 21–39 (2002)

    Article  Google Scholar 

  • Matas, J., Morris, J., Guazzelli, E.: Lateral forces on a sphere. Oil Gas Sci. Technol. 59(1), 59–70 (2004)

    Article  Google Scholar 

  • Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883–889 (1983)

    Article  Google Scholar 

  • McCarthy, J.F., McKay, L.D., Bruner, D.D.: Influence of ionic strength and cation charge on transport of colloidal particles in fractured shale saprolite. Environ. Sci. Technol. 36(17), 3735–3743 (2002)

    Article  Google Scholar 

  • McHugh, A., Silebi, C., Poehlein, G., Vanderhoff, J.: Hydrodynamic chromatography of latex particles. In: Hydrosols and Rheology, pp. 549–562 (1976)

  • McHugh, A.J., Brenner, H.: Particle size measurement using chromatography. Crit. Rev. Anal. Chem. 15, 63–117 (1984)

    Article  Google Scholar 

  • McTigue, D.F., Givler, R.C., Nunziato, J.W.: Rheological effects of nonuniform particle distributions in dilute suspensions. J. Rheol. 30(5), 1053–1076 (1986)

    Article  Google Scholar 

  • Medhi, B.J., Kumar, A.A., Singh, A.: Apparent wall slip velocity measurements in free surface flow of concentrated suspensions. Int. J. Multiph. Flow 37(6), 609–619 (2011)

    Article  Google Scholar 

  • Meeker, S.P., Bonnecaze, R.T., Cloitre, M.: Slip and flow in soft particle pastes. Phys. Rev. Lett. 92(19), 198302 (2004)

    Article  Google Scholar 

  • Metzner, A., Cohen, Y., Rangel-Nafaile, C.: Inhomogeneous flows of non-Newtonian fluids: generation of spatial concentration gradients. J. Nonnewton. Fluid Mech. 5, 449–462 (1979)

    Article  Google Scholar 

  • Mintsa, H.A., Roy, G., Nguyen, C.T., Doucet, D.: New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48(2), 363–371 (2009)

    Article  Google Scholar 

  • Mitzel, M.R., Tufenkji, N.: Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. Environ. Sci. Technol. 48(5), 2715–2723 (2014)

    Article  Google Scholar 

  • Molnar, I.L., Gerhard, J.I., Willson, C.S., O’Carroll, D.M.: The impact of immobile zones on the transport and retention of nanoparticles in porous media. Water Resour. Res. 51(11), 8973–8994 (2015a)

    Article  Google Scholar 

  • Molnar, I.L., Johnson, W.P., Gerhard, J.I., Willson, C.S., O’Carroll, D.M.: Predicting colloid transport through saturated porous media: a critical review. Water Resour. Res. 51(9), 6804–6845 (2015b)

    Article  Google Scholar 

  • Mondal, P.K., Sleep, B.E.: Colloid transport in dolomite rock fractures: effects of fracture characteristics, specific discharge, and ionic strength. Environ. Sci. Technol. 46(18), 9987–9994 (2012)

    Google Scholar 

  • Moridis, G., Hu, Q., Wu, Y.-S., Bodvarsson, G.: Preliminary 3-D site-scale studies of radioactive colloid transport in the unsaturated zone at Yucca Mountain, Nevada. J. Contam. Hydrol. 60(3), 251–286 (2003)

    Article  Google Scholar 

  • Morley, L.M., Hornberger, G.M., Mills, A.L., Herman, J.S.: Effects of transverse mixing on transport of bacteria through heterogeneous porous media. Water Resour. Res. 34(8), 1901–1908 (1998)

    Article  Google Scholar 

  • Morris, J.F., Boulay, F.: Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43(5), 1213–1237 (1999)

    Article  Google Scholar 

  • Mota, M., Teixeira, J., Yelshin, A., Cortez, S.: Utilisation of controlled pore topology for the separation of bioparticles in a mixed-glass beads column. J. Chromatogr. B 843(1), 63–72 (2006)

    Article  Google Scholar 

  • Nagasaki, S., Tanaka, S., Suzuki, A.: Fast transport of colloidal particles through quartz-packed columns. J. Nucl. Sci. Technol. 30(11), 1136–1144 (1993)

    Article  Google Scholar 

  • Najafiazar, B., Yang, J., Simon, C.R., Karimov, F., Torsæter, O., Holt, T.: Transport properties of functionalised silica nanoparticles in porous media. In: SPE Bergen One Day Seminar, Norway, 20 April (2016)

  • Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.-J., Craig, V.S.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859 (2005)

    Article  Google Scholar 

  • Neubauer, E., Köhler, S.J., von der Kammer, F., Laudon, H., Hofmann, T.: Effect of pH and stream order on iron and arsenic speciation in boreal catchments. Environ. Sci. Technol. 47(13), 7120–7128 (2013)

    Article  Google Scholar 

  • Neukum, C., Braun, A., Azzam, R.: Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones. J. Contam. Hydrol. 158, 1–13 (2014)

    Article  Google Scholar 

  • Nie, C., Marlow, W., Hassan, Y.: Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids. Int. J. Heat Mass Transf. 51(5), 1342–1348 (2008)

    Article  Google Scholar 

  • Niehren, S., Kinzelbach, W.: Artificial colloid tracer tests: development of a compact on-line microsphere counter and application to soil column experiments. J. Contam. Hydrol. 35(1), 249–259 (1998)

    Article  Google Scholar 

  • Nirmal, G.M., Ramachandran, A.: Dispersion of a passive tracer in the pressure-driven flow of a non-colloidal suspension. Soft Matter 12(38), 7920–7936 (2016)

    Article  Google Scholar 

  • Noel, R.J., Gooding, K.M., Regnier, F.E., Orr, C., Mullins, M.: Capillary hydrodynamic chromatography. J. Chromatogr. A 166(2), 373–382 (1978)

    Article  Google Scholar 

  • Nott, P.R., Brady, J.F.: Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157–199 (1994)

    Article  Google Scholar 

  • Nott, P.R., Guazzelli, E., Pouliquen, O.: The suspension balance model revisited. Phys. Fluids 23(4), 043304 (2011)

    Article  Google Scholar 

  • Omari, A., Moan, M., Chauveteau, G.: Wall effects in the flow of flexible polymer solutions through small pores. Rheol. Acta 28(6), 520–526 (1989)

    Article  Google Scholar 

  • Ozturk, S., Hassan, Y.A., Ugaz, V.M.: Interfacial complexation explains anomalous diffusion in nanofluids. Nano Lett. 10(2), 665–671 (2010)

    Article  Google Scholar 

  • Panfilov, M., Panfilova, I., Stepanyants, Y.: Mechanisms of particle transport acceleration in porous media. Transp. Porous Media 74(1), 49–71 (2008)

    Article  Google Scholar 

  • Pang, C., Lee, J.W., Kang, Y.T.: Review on combined heat and mass transfer characteristics in nanofluids. Int. J. Therm. Sci. 87, 49–67 (2015)

    Article  Google Scholar 

  • Peng, W., Minli, B., Jizu, L., Liang, Z., Wenzheng, C., Guojie, L.: Comparison of multidimensional simulation models for nanofluids flow characteristics. Numer. Heat Transfer Part B Fundam. 63(1), 62–83 (2013)

    Article  Google Scholar 

  • Petrov, P., Potter, D.K., Cameron, S., London, M., Donald, J., Waterman, W.: Combined CT and magnetic scanning techniques for multimodal imaging of fluid flow in porous media: application to heavy oil waterflooding. In: Paper Presented at the International Symposium of the Society of Core Analysts, St. John’s, Canada, 16–21 August. SCA2015-012 (2015)

  • Philippe, A., Schaumann, G.E.: Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media. PLoS ONE 9(2), e90559 (2014)

    Article  Google Scholar 

  • Phillips, R.J., Armstrong, R.C., Brown, R.A., Graham, A.L., Abbott, J.R.: A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4(1), 30–40 (1992)

    Article  Google Scholar 

  • Pieper, A.P., Ryan, J.N., Harvey, R.W., Amy, G.L., Illangasekare, T.H., Metge, D.W.: Transport and recovery of bacteriophage PRD1 in a sand and gravel aquifer: effect of sewage-derived organic matter. Environ. Sci. Technol. 31(4), 1163–1170 (1997)

    Article  Google Scholar 

  • Pinheiro, I.G., Schmitz, P., Houi, D.: Particle capture in porous media when physico-chemical effects dominate. Chem. Eng. Sci. 54(17), 3801–3813 (1999)

    Article  Google Scholar 

  • Ploehn, H.J.: Lateral migration mechanisms in capillary hydrodynamic chromatography. Int. J. Multiph. Flow 13(6), 773–784 (1987)

    Article  Google Scholar 

  • Polson, A.: Fractionation of protein mixtures on columns of granulated agar. Biochem. Biophys. Acta. 50, 565–567 (1961)

    Article  Google Scholar 

  • Porro, I., Wierenga, P.: Transient and steady-state solute transport through a large unsaturated soil column. Groundwater 31(2), 193–200 (1993)

    Article  Google Scholar 

  • Powelson, D.K., Gerba, C.P., Yahya, M.T.: Virus transport and removal in wastewater during aquifer recharge. Water Res. 27(4), 583–590 (1993)

    Article  Google Scholar 

  • Prasher, R., Bhattacharya, P., Phelan, P.E.: Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 94(2), 025901 (2005)

    Article  Google Scholar 

  • Prasher, R., Bhattacharya, P., Phelan, P.E.: Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J. Heat Transfer 128(6), 588–595 (2006)

    Article  Google Scholar 

  • Prieve, D.C.: Measurement of colloidal forces with TIRM. Adv. Coll. Interface. Sci. 82(1–3), 93–125 (1999)

    Article  Google Scholar 

  • Prieve, D.C., Alexander, B.M.: Hydrodynamic measurement of double-layer repulsion between colloidal particle and flat plate. Science 231(4743), 1269–1270 (1986)

    Article  Google Scholar 

  • Prieve, D.C., Bike, S.G.: Electrokinetic repulsion between two charged bodies undergoing sliding motion. Chem. Eng. Commun. 55(1–6), 149–164 (1987)

    Article  Google Scholar 

  • Prieve, D.C., Hoysan, P.M.: Role of colloidal forces in hydrodynamic chromatography. J. Colloid Interface Sci. 64(2), 201–213 (1978)

    Article  Google Scholar 

  • Puls, R.W., Powell, R.M.: Transport of inorganic colloids through natural aquifer material: implications for contaminant transport. Environ. Sci. Technol. 26(3), 614–621 (1992)

    Article  Google Scholar 

  • Ramachandran, A.: A macrotransport equation for the particle distribution in the flow of a concentrated, non-colloidal suspension through a circular tube. J. Fluid Mech. 734, 219–252 (2013a)

    Article  Google Scholar 

  • Ramachandran, A.: Secondary convection due to second normal stress differences: a new mechanism for the mass transport of solutes in pressure-driven flows of concentrated, non-colloidal suspensions. Soft Matter 9(29), 6824–6840 (2013b)

    Article  Google Scholar 

  • Ramachandran, A., Leighton Jr., D.T.: The effect of gravity on the meniscus accumulation phenomenon in a tube. J. Rheol. 51(5), 1073–1098 (2007)

    Article  Google Scholar 

  • Rehmann, L.L.C., Welty, C., Harvey, R.W.: Stochastic analysis of virus transport in aquifers. Water Resour. Res. 35(7), 1987–2006 (1999)

    Article  Google Scholar 

  • Rehmann, L.L., Welty, C., Harvey, R.W.: Reply to “Comment on ‘Stochastic analysis of virus transport in aquifers’, by Linda L. Campbell Rehmann, Claire Welty, and Ronald W. Harvey”. Water Resour. Res. 36(7), 1983–1984 (2000)

    Article  Google Scholar 

  • Reimus, P.W.: The Use of Synthetic Colloids in Tracer Transport Experiments in Saturated Rock Fractures. Ph.D. thesis. University of New Mexico (1995)

  • Reimus, P.W., Robinson, B., Nuttall, H., Kale, R.: Simultaneous transport of synthetic colloids and a nonsorbing solute through single saturated natural fractures. MRS Proc. 353, 363 (1994)

    Article  Google Scholar 

  • Renkin, E.M.: Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38(2), 225–243 (1954)

    Google Scholar 

  • Rock, A., Hincapie, R., Wegner, J., Födisch, H., Ganzer, L.: Pore-scale visualization of oil recovery by viscoelastic flow instabilities during polymer EOR. In: IOR 2017-19th European Symposium on Improved Oil Recovery (2017)

  • Rodriguez, P., Roberts, E., Yu, M., Huh, H., Bryant, C., Lawrence, S.: Enhanced migration of surface-treated nanoparticles in sedimentary rocks. In: SPE Annual Technical Conference and Exhibition (2009)

  • Roht, Y., Boschan, A., Ippolito, I., Chertcoff, R.: Experimental study of solute dispersion in macroscopic suspension flow. J. Contam. Hydrol. 145, 10–16 (2013)

    Article  Google Scholar 

  • Rubinow, S., Keller, J.B.: The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11(3), 447–459 (1961)

    Article  Google Scholar 

  • Rush, B.M., Dorfman, K.D., Brenner, H., Kim, S.: Dispersion by pressure-driven flow in serpentine microfluidic channels. Ind. Eng. Chem. Res. 41(18), 4652–4662 (2002)

    Article  Google Scholar 

  • Saffman, P.: The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22(02), 385–400 (1965)

    Article  Google Scholar 

  • Sagee, O., Dror, I., Berkowitz, B.: Transport of silver nanoparticles (AgNPs) in soil. Chemosphere 88(5), 670–675 (2012)

    Article  Google Scholar 

  • Saien, J., Bamdadi, H.: Mass transfer from nanofluid single drops in liquid–liquid extraction process. Ind. Eng. Chem. Res. 51(14), 5157–5166 (2012)

    Article  Google Scholar 

  • Sajjadiani, S., Javadpour, F., Jeje, A.A.: Trajectory and transit patterns of isolated nanoparticles in structured micromodels. Austin J. Chem. Eng. 1, 9 (2014)

    Google Scholar 

  • Sakai-Kato, K., Ota, S., Takeuchi, T., Kawanishi, T.: Size separation of colloidally dispersed nanoparticles using a monolithic capillary column. J. Chromatogr. A 1218(32), 5520–5526 (2011)

    Article  Google Scholar 

  • Savithiri, S., Pattamatta, A., Das, S.K.: Scaling analysis for the investigation of slip mechanisms in nanofluids. Nanoscale Res. Lett. 6(1), 471 (2011)

    Article  Google Scholar 

  • Scheibe, T.D., Wood, B.D.: A particle-based model of size or anion exclusion with application to microbial transport in porous media. Water Resour. Res. 39(4), 1080 (2003)

    Article  Google Scholar 

  • Scheibe, T.D., Hou, Z., Palmer, B.J., Tartakovsky, A.M.: Pore-scale simulation of intragranular diffusion: effects of incomplete mixing on macroscopic manifestations. Water Resour. Res. 49(7), 4277–4294 (2013)

    Article  Google Scholar 

  • Segre, G., Silberberg, A.: Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J. Fluid Mech. 14(01), 136–157 (1962)

    Article  Google Scholar 

  • Sekhon, G., Armstrong, R., Jhon, M.S.: The origin of polymer migration in a nonhomogeneous flow field. J. Polym. Sci. Part B Polym. Phys. 20(6), 947–952 (1982)

    Article  Google Scholar 

  • Shang, J., Liu, C., Wang, Z., Wu, H., Zhu, K., Li, J., Liu, J.: In-situ measurements of engineered nanoporous particle transport in saturated porous media. Environ. Sci. Technol. 44(21), 8190–8195 (2010)

    Article  Google Scholar 

  • Shapley, N.C., Armstrong, R.C., Brown, R.A.: Laser Doppler velocimetry measurements of particle velocity fluctuations in a concentrated suspension. J. Rheol. 46(1), 241–272 (2002)

    Article  Google Scholar 

  • Shonnard, D., Taylor, R., Hanna, M., Boro, C., Duba, A.: Injection-attachment of Methylosinus trichosporium OB3b in a two-dimensional miniature sand-filled aquifer simulator. Water Resour. Res. 30(1), 25–35 (1994)

    Article  Google Scholar 

  • Silebi, C., DosRamos, J.: Separation of submicrometer particles by capillary hydrodynamic fractionation (CHDF). J. Colloid Interface Sci. 130(1), 14–24 (1989)

    Article  Google Scholar 

  • Silebi, C.A., McHugh, A.J.: An analysis of flow separation in hydrodynamic chromatography of polymer latexes. AIChE J. 24(2), 204–212 (1978)

    Article  Google Scholar 

  • Silliman, S.E.: Particle transport through two-dimensional, saturated porous media: influence of physical structure of the medium. J. Hydrol. 167(1–4), 79–98 (1995)

    Article  Google Scholar 

  • Singh, P., Kanwar, R.S.: Preferential solute transport through macropores in large undisturbed saturated soil columns. J. Environ. Qual. 20(1), 295–300 (1991)

    Article  Google Scholar 

  • Sinton, L.W., Mackenzie, M.L., Karki, N., Dann, R.L., Pang, L., Close, M.E.: Transport of Escherichia coli and F-RNA bacteriophages in a 5-m column of saturated, heterogeneous gravel. Water Air Soil Pollut. 223(5), 2347–2360 (2012)

    Article  Google Scholar 

  • Sirivithayapakorn, S., Keller, A.: Transport of colloids in saturated porous media: A pore-scale observation of the size exclusion effect and colloid acceleration. Water Resour. Res. 39(4), 1109–1120 (2003)

    Article  Google Scholar 

  • Small, H.: Hydrodynamic chromatography a technique for size analysis of colloidal particles. J. Colloid Interface Sci. 48(1), 147–161 (1974)

    Article  Google Scholar 

  • Sobral, Y., Oliveira, T., Cunha, F.: On the unsteady forces during the motion of a sedimenting particle. Powder Technol. 178(2), 129–141 (2007)

    Article  Google Scholar 

  • Sochi, T.: Slip at fluid-solid interface. Polym. Rev. 51(4), 309–340 (2011)

    Article  Google Scholar 

  • Solovitch, N., Labille, J., Rose, J., Chaurand, P., Borschneck, D., Wiesner, M.R., Bottero, J.-Y.: Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ. Sci. Technol. 44(13), 4897–4902 (2010)

    Article  Google Scholar 

  • Sorbie, K.: Depleted layer effects in polymer flow through porous media: I. Single capillary calculations. J. Colloid Interface Sci. 139(2), 299–314 (1990)

    Article  Google Scholar 

  • Sorbie, K.S.: Polymer-improved oil recovery. Springer Science & Business Media, New York (2013)

    Google Scholar 

  • Sorbie, K., Huang, Y.: Rheological and transport effects in the flow of low-concentration xanthan solution through porous media. J. Colloid Interface Sci. 145(1), 74–89 (1991)

    Article  Google Scholar 

  • Stavland, A., Jonsbraten, H., Lohne, A., Moen, A., Giske, N.H.: Polymer flooding-flow properties in porous media versus rheological parameters. In: SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, Spain, 14–17 June SPE-131103-MS (2010)

  • Steere, R., Ackers, G.: Restricted-diffusion chromatography through calibrated columns of granulated agar gel; a simple method for particle-size determination. Nature 196(4853), 475–476 (1962)

    Article  Google Scholar 

  • Stegeman, G., Kraak, J.C., Poppe, H.: Dispersion in packed-column hydrodynamic chromatography. J. Chromatogr. A 634(2), 149–159 (1993a)

    Article  Google Scholar 

  • Stegeman, G., Kraak, J.C., Poppe, H., Tijssen, R.: Hydrodynamic chromatography of polymers in packed columns. J. Chromatogr. A 657(2), 283–303 (1993b)

    Article  Google Scholar 

  • Striegel, A.M., Brewer, A.K.: Hydrodynamic chromatography. Annu. Rev. Anal. Chem. 5, 15–34 (2012)

    Article  Google Scholar 

  • Subba-Rao, V., Hoffmann, P.M., Mukhopadhyay, A.: Tracer diffusion in nanofluids measured by fluorescence correlation spectroscopy. J. Nanopart. Res. 13(12), 6313–6319 (2011)

    Article  Google Scholar 

  • Subramanian, S., Li, Y., Cathles, L.: Assessing preferential flow by simultaneously injecting nanoparticle and chemical tracers. Water Resour. Res. 49(1), 29–42 (2013)

    Article  Google Scholar 

  • Sun, C., Lu, W.-Q., Liu, J., Bai, B.: Molecular dynamics simulation of nanofluid’s effective thermal conductivity in high-shear-rate Couette flow. Int. J. Heat Mass Transf. 54(11), 2560–2567 (2011)

    Article  Google Scholar 

  • Syngouna, V.I., Chrysikopoulos, C.V.: Transport of biocolloids in water saturated columns packed with sand: effect of grain size and pore water velocity. J. Contam. Hydrol. 126(3), 301–314 (2011)

    Article  Google Scholar 

  • Tabatabaei, S., van de Ven, T., Rey, A.: Electroviscous sphere–wall interactions. J. Colloid Interface Sci. 301(1), 291–301 (2006)

    Article  Google Scholar 

  • Takeuchi, T., Aspanut, Z., Lim, L.W.: Hydrodynamic chromatography of silica colloids on small spherical nonporous silica particles. Anal. Sci. 25(2), 301–306 (2009)

    Article  Google Scholar 

  • Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 219, 186–203 (1953)

    Google Scholar 

  • Taylor, G.: Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. A 225, 473–477 (1954)

    Article  Google Scholar 

  • Thomas, G.W., Swoboda, A.: Anion exclusion effects on chloride movement in soils. Soil Sci. 110(3), 163–166 (1970)

    Article  Google Scholar 

  • Tijssen, R., Bos, J.: Mechanisms of the separation and transport of polymer systems in chromatographic media. In: Theoretical Advancement in Chromatography and Related Separation Techniques (pp. 397–441). Springer (1992)

  • Tijssen, R., Bos, J., van Kreveld, M.E.: Hydrodynamic chromatography of macromolecules in open microcapillary tubes. Anal. Chem. 58(14), 3036–3044 (1986)

    Article  Google Scholar 

  • Tirrell, M., Malone, M.F.: Stress-induced diffusion of macromolecules. J. Polym. Sci. Part B Polym. Phys. 15(9), 1569–1583 (1977)

    Article  Google Scholar 

  • Toghraie, D., Mokhtari, M., Afrand, M.: Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannels. Phys. E 84, 152–161 (2016)

    Article  Google Scholar 

  • Tokarev, A., Panasenko, G., Ataullakhanov, F.: Segregation of flowing blood: mathematical description. Math. Model. Nat. Phenom. 6(5), 281–319 (2011)

    Article  Google Scholar 

  • Toran, L., Palumbo, A.: Colloid transport through fractured and unfractured laboratory sand columns. J. Contam. Hydrol. 9(3), 289–303 (1992)

    Article  Google Scholar 

  • Tsang, C.F., Neretnieks, I.: Flow channeling in heterogeneous fractured rocks. Rev. Geophys. 36(2), 275–298 (1998)

    Article  Google Scholar 

  • Turanov, A., Tolmachev, Y.V.: Heat-and mass-transport in aqueous silica nanofluids. Heat Mass Transf. 45(12), 1583–1588 (2009)

    Article  Google Scholar 

  • Ureña-Benavides, E.E., Lin, E.L., Foster, E.L., Xue, Z., Ortiz, M.R., Fei, Y., Moaseri, E., et al.: Low adsorption of magnetite nanoparticles with uniform polyelectrolyte coatings in concentrated brine on model silica and sandstone. Ind. Eng. Chem. Res. 55(6), 1522–1532 (2016)

    Article  Google Scholar 

  • Usta, O.B., Butler, J.E., Ladd, A.J.: Flow-induced migration of polymers in dilute solution. Phys. Fluids 18(3), 031703 (2006)

    Article  Google Scholar 

  • Van de Ven, T., Warszynski, P., Dukhin, S.: Electrokinetic lift of small particles. J. Colloid Interface Sci. 157(2), 328–331 (1993)

    Article  Google Scholar 

  • Van Genuchten, M.T.: Non-equilibrium transport parameters from miscible displacement experiments. In: Research Report No. 119. U.S. Salinity Laboratory, Riverside, CA (1981)

  • Vasiliadou, I.A., Chrysikopoulos, C.V.: Cotransport of Pseudomonas putida and kaolinite particles through water-saturated columns packed with glass beads. Water Resour. Res. (2011). https://doi.org/10.1029/2010WR009560

    Article  Google Scholar 

  • Veilleux, J., Coulombe, S.: A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids. J. Appl. Phys. 108(10), 104316 (2010)

    Article  Google Scholar 

  • Venema, E., Kraak, J., Poppe, H., Tijssen, R.: Packed-column hydrodynamic chromatography using 1-μm non-porous silica particles. J. Chromatogr. A 740(2), 159–167 (1996)

    Article  Google Scholar 

  • Vilks, P., Bachinski, D.B.: Colloid and suspended particle migration experiments in a granite fracture. J. Contam. Hydrol. 21(1–4), 269–279 (1996)

    Article  Google Scholar 

  • Vos, K., Vandenberghe, N., Elsen, J.: Surface textural analysis of quartz grains by scanning electron microscopy (SEM): from sample preparation to environmental interpretation. Earth Sci. Rev. 128, 93–104 (2014)

    Article  Google Scholar 

  • Wang, Y., Bradford, S.A., Šimůnek, J.: Physicochemical factors influencing the preferential transport of Escherichia coli in soils. Vadose Zone J. (2014). https://doi.org/10.2136/vzj2013.07.0120

    Article  Google Scholar 

  • Wang, Y., Jiang, W., Miller, S., Eckstein, E.: Dissipative particle dynamics simulation of on-chip hydrodynamic chromatography. J. Chromatogr. A 1198, 140–147 (2008)

    Article  Google Scholar 

  • Wang, Z.Y., Lam, Y.C., Joshi, S.C., Chen, X.: Determination of pressure drop for concentrated suspension in a capillary flow. Polym. Compos. 31(5), 792–798 (2010)

    Google Scholar 

  • Wernert, V.R., Bouchet, R., Denoyel, R.: Influence of molecule size on its transport properties through a porous medium. Anal. Chem. 82(7), 2668–2679 (2010)

    Article  Google Scholar 

  • White, R.: The influence of macropores on the transport of dissolved and suspended matter through soil. In: Advances in Soil Science, pp. 95–120. Springer (1985)

  • Wilkinson, K.J., Lead, J.R.: Environmental Colloids and Particles: Behaviour, Separation and Characterisation, vol. 10. Wiley, New York (2007)

    Google Scholar 

  • Williams, A., Varela, E., Meehan, E., Tribe, K.: Characterisation of nanoparticulate systems by hydrodynamic chromatography. Int. J. Pharm. 242(1), 295–299 (2002)

    Article  Google Scholar 

  • Wilson, I.D., Poole, C.: Handbook of Methods and Instrumentation in Separation Science, vol. 1. Academic, Cambridge (2009)

    Google Scholar 

  • Wood, B.D.: Inertial effects in dispersion in porous media. Water Resour. Res. 43, 12 (2007)

    Article  Google Scholar 

  • Xie, J., Lu, J., Lin, J., Zhou, X., Xu, Q., Li, M., Zhang, J.: Insights into transport velocity of colloid-associated plutonium relative to tritium in porous media. Sci. Rep. 4, 5037 (2014)

    Article  Google Scholar 

  • Yao, C., Zhao, Y., Lei, G., Steenhuis, T.S., Cathles, L.M.: Inert carbon nanoparticles for the assessment of preferential flow in saturated dual-permeability porous media. Ind. Eng. Chem. Res. 56(25), 7365–7374 (2017)

    Article  Google Scholar 

  • Yegin, B.A., Lamprecht, A.: Lipid nanocapsule size analysis by hydrodynamic chromatography and photon correlation spectroscopy. Int. J. Pharm. 320(1), 165–170 (2006)

    Article  Google Scholar 

  • Yilmazer, U., Kalyon, D.M.: Slip effects in capillary and parallel disk torsional flows of highly filled suspensions. J. Rheol. 33(8), 1197–1212 (1989)

    Article  Google Scholar 

  • Yu, H., He, Y., Li, P., Li, S., Zhang, T., Rodriguez-Pin, E., Bielawski, C.W.: Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks. Sci. Rep. 5, 8702 (2015)

    Article  Google Scholar 

  • Zaitoun, A., Kohler, N.: The role of adsorption in polymer propagation through reservoir rocks. In: Paper PRESENTED at the SPE International Symposium on Oilfield Chemistry, San Antonio, USA, 4–6 February. Society of Petroleum Engineers. SPE-16274-MS (1987)

  • Zami-Pierre, F., de Loubens, R., Quintard, M., Davit, Y.: Polymer flow through porous media: numerical prediction of the contribution of slip to the apparent viscosity. Transp. Porous Media 119(3), 521–538 (2017)

    Article  Google Scholar 

  • Zhang, J., Yan, S., Yuan, D., Alici, G., Nguyen, N.-T., Warkiani, M.E., Li, W.: Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16(1), 10–34 (2016a)

    Article  Google Scholar 

  • Zhang, P., Bai, B., Jiang, S., Wang, P., Li, H.: Transport and deposition of suspended particles in saturated porous media: effect of hydrodynamic forces and pore structure. Water Sci. Technol. Water Supply 16(4), 951–960 (2016b)

    Article  Google Scholar 

  • Zheng, Q., Dickson, S.E., Guo, Y.: Differential transport and dispersion of colloids relative to solutes in single fractures. J. Colloid Interface Sci. 339(1), 140–151 (2009)

    Article  Google Scholar 

  • Zhou, R., Chang, H.-C.: Capillary penetration failure of blood suspensions. J. Colloid Interface Sci. 287(2), 647–656 (2005)

    Article  Google Scholar 

  • Zrehen, A., Ramachandran, A.: Demonstration of secondary currents in the pressure-driven flow of a concentrated suspension through a square conduit. Phys. Rev. Lett. 110(1), 018306 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was undertaken, in part, thanks to funding from the Canada Excellence Research Chairs Program. The authors gratefully acknowledge the financial support of the FUR program from NSERC, AITF and the sponsoring companies: Athabasca Oil Corporation, Devon Canada, Foundation CMG, Husky Energy, Brion Energy, Canadian Natural, Suncor Energy, as well as the Schulich School of Engineering (University of Calgary).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Kantzas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donath, A., Kantzas, A. & Bryant, S. Opportunities for Particles and Particle Suspensions to Experience Enhanced Transport in Porous Media: A Review. Transp Porous Med 128, 459–509 (2019). https://doi.org/10.1007/s11242-019-01256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01256-4

Keywords

Navigation