Skip to main content
Log in

Advanced Reduced-Order Models for Moisture Diffusion in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

It is of great concern to produce numerically efficient methods for moisture diffusion through porous media, capable of accurately calculate moisture distribution with a reduced computational effort. In this way, model reduction methods are promising approaches to bring a solution to this issue since they do not degrade the physical model and provide a significant reduction of computational cost. Therefore, this article explores in details the capabilities of two model reduction techniques—the Spectral reduced-order model and the proper generalized decomposition—to numerically solve moisture diffusive transfer through porous materials. Both approaches are applied to three different problems to provide clear examples of the construction and use of these reduced-order models. The methodology of both approaches is explained extensively so that the article can be used as a numerical benchmark by anyone interested in building a reduced-order model for diffusion problems in porous materials. Linear and nonlinear unsteady behaviors of unidimensional moisture diffusion are investigated. The last case focuses on solving a parametric problem in which the solution depends on space, time and the diffusivity properties. Results have highlighted that both methods provide accurate solutions and enable to reduce significantly the order of the model around 10 times lower than the large original model. It also allows an efficient computation of the physical phenomena with an error lower than \(10^{-2}\) when compared to a reference solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(c_\mathrm{m}\) :

Moisture storage capacity (\(\mathrm{kg/m}^\mathrm{3}/\mathrm{Pa}\))

\(d_\mathrm{m}\) :

Moisture diffusion \((\mathrm{s})\)

g :

Liquid flux \((\mathrm{kg/m}^{2}\mathrm{{/s}})\)

\(h_\mathrm{v}\) :

Vapor convective transfer coefficient \((\mathrm{s/m})\)

k :

Permeability \((\mathrm{s})\)

L :

Length \((\mathrm{m})\)

\(P_\mathrm{c}\) :

Capillary pressure \((\mathrm{Pa})\)

\(P_\mathrm{s}\) :

Saturation pressure \((\mathrm{Pa})\)

\(P_\mathrm{v}\) :

Vapor pressure \((\mathrm{Pa})\)

\(R_\mathrm{v}\) :

Water gas constant \((\mathrm{J/kg/K})\)

T :

Temperature \((\mathrm{K} )\)

\(\phi \) :

Relative humidity \((-)\)

\(\rho \) :

Specific mass \((\mathrm{kg/m}^\mathrm{3})\)

References

  • Aguado, J., Chinesta, F., Leygue, A., Prendes, E.C., Huerta, A.: DEIM-Based PGD for Parametric Nonlinear Model Order Reduction. International Center for Numerical Methods in Engineering (CIMNE), Lisbon (2013)

    Google Scholar 

  • Al-Mohy, A.H., Higham, N.J.: A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31(3), 970–989 (2009)

    Article  Google Scholar 

  • Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)

    Article  Google Scholar 

  • Al-Sanea, S., Zedan, M.: Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass. Appl. Energy 88(9), 3113–3124 (2011)

    Article  Google Scholar 

  • Al-Sanea, S., Zedan, M., Al-Ajlan, S.A.: Effect of electricity tariff on the optimum insulation-thickness in building walls as determined by a dynamic heat-transfer model. Appl. Energy 82(4), 313–330 (2005)

    Article  Google Scholar 

  • Ammar, A., Chinesta, F.: Circumventing curse of dimensionality in the solution of highly multidimensional models encountered in quantum mechanics using meshfree finite sums decomposition. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations IV, Lecture Notes in Computational Science and Engineering, vol. 65, pp. 1–17. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: transient simulation using space-time separated representations. J. Nonnewton. Fluid Mech. 144(2–3), 98–121 (2007)

    Article  Google Scholar 

  • Ammar, A., Normandin, M., Daim, F., Gonzalez, D., Cueto, E., Chinesta, F.: Non incremental strategies based on separated representations: applications in computational rheology. Commun. Math. Sci. 8(3), 671–695 (2010). (mathematical reviews number (MathSciNet): MR2730326; Zentralblatt MATH identifier: 05838595)

    Article  Google Scholar 

  • Aste, N., Angelotti, A., Buzzetti, M.: The influence of the external walls thermal inertia on the energy performance of well insulated buildings. Energy Build. 41(11), 1181–1187 (2009)

    Article  Google Scholar 

  • Axaopoulos, I., Axaopoulos, P., Gelegenis, J.: Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind. Appl. Energy 117, 167–175 (2014)

    Article  Google Scholar 

  • Bednar, T., Hagentoft, C.: Analytical solution for moisture buffering effect validation exercises for simulation tools. In: Nordic Symposium on Building Physics, Reykjavik, Iceland (2005)

  • Berger, J., Chhay, M., Guernouti, S., Woloszyn, M.: Proper generalized decomposition for solving coupled heat and moisture transfer. J. Build. Perform. Simul. 8(5), 295–311 (2015)

    Article  Google Scholar 

  • Berger, J., Mendes, N.: An innovative method for the design of high energy performance building envelopes. Appl. Energy 190, 266–277 (2017)

    Article  Google Scholar 

  • Berger, J., Mendes, N., Guernouti, S., Woloszyn, M., Chinesta, F.: Review of reduced order models for heat and moisture transfer in building physics with emphasis in PGD approaches. Arch. Comput. Methods Eng. 24, 1–13 (2016)

    Google Scholar 

  • Bognet, B., Bordeu, F., Chinesta, F., Leygue, A., Poitou, A.: Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput. Methods Appl. Mech. Eng. 201–204, 1–12 (2012)

    Article  Google Scholar 

  • Bond, D., Clark, W., Kimber, M.: Configuring wall layers for improved insulation performance. Appl. Energy 112, 235–245 (2013)

    Article  Google Scholar 

  • Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, New York (2000)

    Google Scholar 

  • Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods–Fundamentals in Single Domains: Scientific Computation. Springer, Berlin (2006)

    Google Scholar 

  • Chaturantabut, S., Sorensen, S.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  Google Scholar 

  • Chen, S.-S., Li, B.-W., Sun, Y.-S.: Chebyshev collocation spectral method for solving radiative transfer with the modified discrete ordinates formulations. Int. J. Heat Mass Transf. 88, 388–397 (2015)

    Article  Google Scholar 

  • Chen, Y.-Y., Li, B.-W., Zhang, J.-K.: Spectral collocation method for natural convection in a square porous cavity with local thermal equilibrium and non-equilibrium models. Int. J. Heat Mass Transf. 96, 84–96 (2016)

    Article  Google Scholar 

  • Chinesta, F., Ammar, A., Leygue, A., Keunings, R.: An overview of the proper generalized decomposition with applications in computational rheology. J. Nonnewton. Fluid Mech. 166(11), 578–592 (2011a)

    Article  Google Scholar 

  • Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer. Springer, New York (2013a)

    Google Scholar 

  • Chinesta, F., Ladevèze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18(4), 395–404 (2011b)

    Article  Google Scholar 

  • Chinesta, F., Leygue, A., Bordeu, F., Aguado, J.V., Cueto, E., Gonzalez, D., Alfaro, I., Ammar, A., Huerta, A.: PGD-based computational vademecum for efficient design, optimization and control. Arch. Comput. Methods Eng. 20(1), 31–59 (2013b)

    Article  Google Scholar 

  • Cox, S., Matthews, P.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)

    Article  Google Scholar 

  • Dalgliesh, A., Cornick, S., Maref, W., Mukhopadhyaya, P.: Hygrothermal performance of building envelopes: uses for 2D and 1D simulation. In: 10th Conference on Building Science and Technology Proceedings, NRC Publication Archive, Ottawa (2005)

  • Dos Santos, G.H., Mendes, N.: Simultaneous heat and moisture transfer in soils combined with building simulation. Energy Build. 38(4), 303–314 (2006)

    Article  Google Scholar 

  • Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  • Dumon, A., Allery, C., Ammar, A.: Proper general decomposition (PGD) for the resolution of Navier–Stokes equations. J. Comput. Phys. 230(4), 1387–1407 (2011)

    Article  Google Scholar 

  • Gasparin, S., Berger, J., Dutykh, D., Mendes, N.: Solving nonlinear diffusive problems in buildings by means of spectral methods. J. Build. Perform. Simul. (2017a). https://doi.org/10.1080/19401493.2018.1458905

  • Gasparin, S., Berger, J., Dutykh, D., Mendes, N.: Stable explicit schemes for simulation of nonlinear moisture transfer in porous materials. J. Build. Perform. Simul. 11, 1–16 (2017b)

    Google Scholar 

  • Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004)

    Google Scholar 

  • Golub, G.H., Loan, C.V.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)

    Google Scholar 

  • Guo, W., Labrosse, G., Narayanan, R.: The Application of the Chebyshev–Spectral Method in Transport Phenomena, Lecture Notes in Applied and Computational Mechanics. Springer, Berlin (2013)

    Google Scholar 

  • Ibrahim, M., Biwole, P.H., Achard, P., Wurtz, E., Ansart, G.: Building envelope with a new aerogel-based insulating rendering: experimental and numerical study, cost analysis, and thickness optimization. Appl. Energy 159, 490–501 (2015)

    Article  Google Scholar 

  • Janssen, H.: Simulation efficiency and accuracy of different moisture transfer potentials. J. Build. Perform. Simul. 7(5), 379–389 (2014)

    Article  Google Scholar 

  • Janssen, H., Blocken, B., Carmeliet, J.: Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation. Int. J. Heat Mass Transf. 50(5–6), 1128–1140 (2007)

    Article  Google Scholar 

  • Kenney, C.S., Laub, A.J.: A Schur–Fréchet algorithm for computing the logarithm and exponential of a matrix. SIAM J. Matrix Anal. Appl. 19(3), 640–663 (1998)

    Article  Google Scholar 

  • Labat, M., Magniont, C., Oudhof, N., Aubert, J.: From the experimental characterization of the hygrothermal properties of straw–clay mixtures to the numerical assessment of their buffering potential. Build. Environ. 97, 69–81 (2016)

    Article  Google Scholar 

  • Ladevèze, P.: Sur une famille d’algorithmes en mécanique des structures. Comptes-rendus des séances de l’Académie des sciences. Série 2, Mécanique-physique, chimie, sciences de l’univers. sciences de la terre 300(2), 41–44 (1985)

    Google Scholar 

  • Lamari, H., Ammar, A., Leygue, A., Chinesta, F.: On the solution of the multidimensional Langer’s equation using the proper generalized decomposition method for modeling phase transitions. Modell. Simul. Mater. Sci. Eng. 20(1), 7–15 (2012)

    Article  Google Scholar 

  • Li, B.-W., Sun, Y.-S., Yu, Y.: Iterative and direct Chebyshev collocation spectral methods for one-dimensional radiative heat transfer. Int. J. Heat Mass Transf. 51(25–26), 5887–5894 (2008)

    Article  Google Scholar 

  • Luikov, A.: Heat and Mass Transfer in Capillary–Porous Bodies. Pergamon Press Ltd, London (1966)

    Book  Google Scholar 

  • Ma, J., Li, B.-W., Howell, J.R.: Thermal radiation heat transfer in one- and two-dimensional enclosures using the spectral collocation method with full spectrum k-distribution model. Int. J. Heat Mass Transf. 71, 35–43 (2014)

    Article  Google Scholar 

  • Mendes, N., Chhay, M., Berger, J., Dutykh, D.: Numerical Methods for Diffusion Phenomena in Building Physics. PUC Press, Curitiba (2016)

    Book  Google Scholar 

  • Mendes, N., Philippi, P.C.: A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture content gradients. Int. J. Heat Mass Transf. 48(1), 37–51 (2005)

    Article  Google Scholar 

  • Moler, C., Loan, C.V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  Google Scholar 

  • Motsa, S.: On the new bivariate local linearisation method for solving coupled partial differential equations in some applications of unsteady fluid flows with heat and mass transfer, chapter 01. In: Solecki, M. (ed.) Mass Transfer—Advancement in Process Modelling. InTech, Rijeka (2015)

    Google Scholar 

  • Neron, D., Ladevèze, P.: Proper generalized decomposition for multiscale and multiphysics problems. Arch. Comput. Methods Eng. 17(4), 351–372 (2010)

    Article  Google Scholar 

  • Niroomandi, S., González, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E., Chinesta, F.: Real-time simulation of biological soft tissues: a PGD approach. Int. J. Numer. Methods Biomed. Eng. 29(5), 586–600 (2013)

    Article  Google Scholar 

  • Nouy, A.: A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 196(45–48), 4521–4537 (2007)

    Article  Google Scholar 

  • Oumeziane, Y.A., Bart, M., Moissette, S., Lanos, C.: Hysteretic behaviour and moisture buffering of hemp concrete. Transp. Porous Media 103(3), 515–533 (2014)

    Article  Google Scholar 

  • Ozel, M.: Effect of wall orientation on the optimum insulation thickness by using a dynamic method. Appl. Energy 88(7), 2429–2435 (2011)

    Article  Google Scholar 

  • Özisik, M.N.: Heat Conduction, 2nd edn. A Wiley-Interscience, New York (1993)

    Google Scholar 

  • Pasban, A., Sadrnia, H., Mohebbi, M., Shahidi, S.A.: Spectral method for simulating 3D heat and mass transfer during drying of apple slices. J. Food Eng. 212(Supplement C), 201–212 (2017)

    Article  Google Scholar 

  • Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)

    Book  Google Scholar 

  • Philip, J.R., De Vries, D.A.: Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 38(2), 222–232 (1957)

    Article  Google Scholar 

  • Prulière, E., Chinesta, F., Ammar, A.: On the deterministic solution of multidimensional parametric models using the proper generalized decomposition. Math. Comput. Simul. 81(4), 791–810 (2010)

    Article  Google Scholar 

  • Rafidiarison, H., Rémond, R., Mougel, E.: Dataset for validating 1D heat and mass transfer models within building walls with hygroscopic materials. Build. Environ. 89, 356–368 (2015)

    Article  Google Scholar 

  • RamReddy, C., Narayana, P.L., Motsa, S.: A spectral relaxation method for linear and non-linear stratification effects on mixed convection in a porous medium. Appl. Math. Comput. 268, 991–1000 (2015)

    Google Scholar 

  • Rode, C., Peuhkur, R.: The concept of moisture buffer value of building materials and its application in building design, vol. III, pp. 57–62 (2006)

  • Roels, S., Carmeliet, J., Hens, H.: Modelling unsaturated moisture transport in heterogeneous limestone. Transp. Porous Media 52(3), 333–350 (2003)

    Article  Google Scholar 

  • Shampine, L., Reichelt, M.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  Google Scholar 

  • Trefethen, L.: Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations. The author, Ithaca (1996)

    Google Scholar 

  • Waldrop, M.: More than Moore. Nature 530, 144–147 (2016)

    Article  Google Scholar 

  • Wang, C., Qiu, Z., Yang, Y.: Collocation methods for uncertain heat convection–diffusion problem with interval input parameters. Int. J. Therm. Sci. 107, 230–236 (2016)

    Article  Google Scholar 

  • Woloszyn, M., Rode, C.: Tools for performance simulation of heat, air and moisture conditions of whole buildings. Build. Simul. 1(1), 5–24 (2008)

    Article  Google Scholar 

  • Yuan, J., Farnham, C., Emura, K., Alam, M.: Proposal for optimum combination of reflectivity and insulation thickness of building exterior walls for annual thermal load in Japan. Build. Environ. 103, 228–237 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian Agencies CAPES of the Ministry of Education and CNPQ of the Ministry of Science, Technology and Innovation, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suelen Gasparin.

Appendices

Appendix A: Dimensionless Values

1.1 A.1 Linear Case

Problem (5) is taken into account with \(g_{\mathrm{l}, \mathrm {L}}^{\star }=g_{\mathrm{l}, \mathrm {R}}^{\star }=0 \) and a Dirichlet condition on the left side:

$$\begin{aligned} c_\mathrm{m}^{\star }\frac{\partial u}{\partial t^{\star }}&=\frac{\partial }{\partial x^{\star }} \left( d_\mathrm{m}^{\star }\frac{\partial u}{\partial x^{\star }} \right) , \quad t^{\star }> 0, \quad x^{\star }\in \ \big [ 0, 1 \big ] , \end{aligned}$$
(23a)
$$\begin{aligned} u&=u_{\mathrm {L}}, \quad t^{\star }> 0, \quad x^{\star }=0 , \end{aligned}$$
(23b)
$$\begin{aligned} -d_\mathrm{m}^{\star }\frac{\partial u}{\partial x^{\star }}&=\mathrm {Bi}_{\mathrm{v},\mathrm {R}}\cdot \Bigl ( u -u_{\mathrm {R}}(t^{\star }) \Bigr ) , \quad t^{\star }> 0, \quad x^{\star }=1 , \end{aligned}$$
(23c)
$$\begin{aligned} u&=1 , \quad t^{\star }=0, \quad x^{\star }\in \big [ 0, 1 \big ] . \end{aligned}$$
(23d)

The dimensionless properties of the material are \(d_\mathrm{m}^{\star }=1\) and \(c_\mathrm{m}^{\star }=430\). The reference time is \(t^{0}=1\) \(\mathrm{h}\), thus the final simulation time is fixed to \(t^{\star } =120\). The Biot number is \(\mathrm {Bi}_{\mathrm{v},\mathrm {R}}=333\). The boundary conditions are expressed as:

$$\begin{aligned} u_{\mathrm {L}}&=1 , \\ u_{\mathrm {R}}(t^{\star })&=1 +1.6 \sin ^{2} \left( \frac{2\pi t^{\star }}{48}\right) . \end{aligned}$$

1.2 A.2 Parametric Case

Problem (5) is taken into account with \(g_{\mathrm{l}, \mathrm {L}}^{\star }=g_{\mathrm{l}, \mathrm {R}}^{\star }=0\) and a Dirichlet condition on the left side, the same as in the previous case. The reference time is \(t^{0}=1\) \(\mathrm{h}\), thus the final simulation time is fixed to \(t^{\star } =120\). The Biot number is \(\mathrm {Bi}_{\mathrm{v},\mathrm {R}}=100\). The boundary conditions are expressed as:

$$\begin{aligned} u_{\mathrm {L}}&=1 , \\ u_{\mathrm {R}}(t^{\star })&=1 +1.6 \sin ^{2} \left( \frac{2\pi t^{\star }}{48}\right) . \end{aligned}$$

The dimensionless properties of the materials are \(d_\mathrm{m}^{\star }=1\) and \(c_\mathrm{m}^{\star }\) assume the following values:

i

1

2

3

4

5

6

7

8

9

10

\(c_{m,i}^{\star }\)

833

576

441

357

300

258

227

203

183

166

1.3 A.3 Nonlinear Case

Problem (5) is taken into account with \(g_{\mathrm{l}, \mathrm {L}}^{\star }=g_{\mathrm{l}, \mathrm {R}}^{\star }=0\) and Robin condition on both boundaries. The Biot number are \(\mathrm {Bi}_{\mathrm{v},\mathrm {L}}=10\) and \(\mathrm {Bi}_{\mathrm{v},\mathrm {R}}=15\). The boundary conditions are expressed as:

$$\begin{aligned}&u_{\mathrm {L}}(t^{\star }) =1 +0.3 \biggl [ 1 -\cos \left( \frac{2\pi t^{\star }}{24}\right) \biggr ] , \\&u_{\mathrm {R}}(t^{\star }) =1 +0.6 \sin ^{2} \left( \frac{2\pi t^{\star }}{60}\right) . \end{aligned}$$

The reference time is \(t^{0}=1\) \(\mathrm{h}\), thus the final simulation time is fixed to \(t^{\star } =120\). The dimensionless properties of the materials are:

$$\begin{aligned} d_\mathrm{m}^{\star }(u)&=\bigl ( 0.86 +0.25 u \bigr ) \cdot 5 \times 10^{-3} , \\ c_\mathrm{m}^{\star }(u)&=3.36 -6.11 u +3.37 u^{2} . \end{aligned}$$

Appendix B: Solving the Spectral ODE Reduced System

Consider a more general situation of the reduced-order system (14):

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{a}(t) &{} =&{} \mathcal {A}(\nu ) a +{b}(t , a(t) ;\nu ) , \\ a(t_{0})&{} =&{} a_{0} , \end{array}\right. \end{aligned}$$
(24)

where \({b}(t , a(t) ;\nu )\) depends on the solution a(t) via nonlinear boundary conditions, or it contains problem’s nonlinearities, if there are some. The dependence on parameters is the most accurate within the chosen Spectral framework. The general analytical solution to problem (24) can be written as:

$$\begin{aligned} a(t;\nu ) =\mathrm {e}^{ ( t -t_{0} ) \mathcal {A}(\nu ) } a_{0} +\int _{t_{0}}^{t} \mathrm {e}^{ (t -\tau ) \mathcal {A}(\nu )} {b}\bigl ( \tau , a(\tau ); \nu \bigr ) \mathrm {d}\tau . \end{aligned}$$
(25)

The exponential matrix is defined as the limit:

$$\begin{aligned} \mathrm {e}^{t\mathcal {A}} =\lim _{n \rightarrow \infty } \biggl (\mathrm {Id} +\dfrac{1}{n} t \mathcal {A}\biggr )^{n} , \end{aligned}$$

in which \(\mathrm {Id} \in \mathrm {Mat}_{(n-2)\times (n-2)}(\mathbb {R})\) is the identity matrix. However, this method is not the best way to compute the exponential matrix. In some particular cases, the solution of Eq. (24) can be simplified and thus better exploited (Moler and Loan 2003).

Case I: If we have homogeneous boundary conditions, problem (24) becomes:

$$\begin{aligned} \left\{ \begin{array}{l} \dot{a} =\mathcal {A}(\nu ) a ,\\ a( t_{0} ) =a_{0} , \end{array}\right. \end{aligned}$$

and it can be analytically solved as:

$$\begin{aligned} a(t ; \nu ) =\mathrm {e}^{( t -t_{0} ) \mathcal {A}(\nu )} a_{0}. \end{aligned}$$

Using modern methods, the exponential matrix can be computed using \(\sim 48n^{3}\) floating point operations per second (FLOPS) (Al-Mohy and Higham 2009). As an information to the reader, the previous result was \(\sim 538n^{3}\) FLOPS (Kenney and Laub 1998).

However, one can notice that we do not really need to build the exponential matrix, but we want to compute its action on the initial state vector \(a_{0}\). Nowadays, it can be directly done, without forming \(\mathrm {e}^{( t -t_{0})\mathcal {A}( \nu )}\), explicitly to a prescribed accuracy that can be set significantly lower than the standard machine precision \(\sim 10^{-16}\) (Al-Mohy and Higham 2011). If computing Eq. (24) by a MATLAB solver, for example ODE45, the standard tolerance is of order of \(\sim 10^{-6}\).

Case II: If we have inhomogeneous boundary conditions constant in time, the problem from Eq. (24) becomes:

$$\begin{aligned} \left\{ \begin{array}{l} \dot{a} =\mathcal {A}( \nu ) a +{b}( \nu ) , \\ a ( t_{0} ) =a_{0} , \end{array}\right. \end{aligned}$$

which can also be analytically solved:

$$\begin{aligned} a ( t; \nu ) =\mathrm {e}^{( t -t_{0} ) \mathcal {A}(\nu )} a_{0} +( t -t_{0} ) \frac{\mathrm {e}^{( t -t_{0} ) \mathcal {A}( \nu )} -\mathrm {Id} }{( t -t_{0} ) \mathcal {A}(\nu )} {b}( \nu ) . \end{aligned}$$

Case III: If we have inhomogeneous boundary conditions are linear in time, problem Eq. (24) becomes:

$$\begin{aligned} \left\{ \begin{array}{l} \dot{a} =\mathcal {A}( \nu ) a +{b}( \nu )\cdot t , \\ a ( t_{0} ) =a_{0} , \end{array}\right. \end{aligned}$$

the solution is given by:

$$\begin{aligned} a ( t; \nu ) =\mathrm {e}^{( t -t_{0} ) \mathcal {A}( \nu )} a_{0} +( t -t_{0} )^{2} \ \frac{\mathrm {e}^{( t -t_{0} ) \mathcal {A}( \nu )} -\mathrm {Id} }{( t -t_{0} ) \mathcal {A}( \nu )} \ {b}( \nu ) . \end{aligned}$$

Case IV: Boundary condition is polynomial in time:

$$\begin{aligned} \left\{ \begin{array}{l} \dot{a} =\mathcal {A}( \nu ) a +{b}( \nu ) \cdot t^{ m-1},\quad m \ \geqslant \ 3 , \\ a ( t_{0} ) =a_{0} . \end{array}\right. \end{aligned}$$

Then, the solution is given by the following analytical formula:

$$\begin{aligned} a ( t; \nu ) =\mathrm {e}^{( t -t_{0} ) \mathcal {A}( \nu )} a_{0} +( t -t_{0} )^{m} \ \varphi _{ m} \Bigl ( ( t -t_{0} ) \mathcal {A}( \nu ) \Bigr ) {b}( \nu ) . \end{aligned}$$

Above we introduced the so-called matrix \(\varphi \)-functions:

$$\begin{aligned} \varphi _\mathrm{m} ( z ) =\dfrac{\varphi _\mathrm{m} ( z) -\dfrac{1}{m!}}{z}, \quad m \ \geqslant \ 0 \quad \text {with} \quad \varphi _{0} (z)\ \equiv \ \mathrm {e}^{z} . \end{aligned}$$

A few first functions are given below explicitly:

$$\begin{aligned} \varphi _{ 0} ( z )&=\mathrm {e}^{z} =1 +z +\dfrac{1}{2} z^{2} +\dfrac{1}{3!} z^{3} +\cdots \\ \varphi _{ 1} ( z )&=\dfrac{\mathrm {e}^{z}-1}{z} =1 +\dfrac{1}{2} z +\dfrac{1}{3!} z^{2} +\dfrac{1}{4!} z^{3} +\cdots \\ \varphi _{ 2} ( z )&=\dfrac{\mathrm {e}^{z}-1-z}{z^{2}} =\dfrac{1}{2} +\dfrac{1}{3!} z +\dfrac{1}{4!} z^{2} +\dfrac{1}{5!} z^{3} +\cdots \\ \varphi _{ 3} ( z )&=\dfrac{\mathrm {e}^{z}-1-z-\frac{1}{2}}{z^{3}} =\dfrac{1}{3!} +\dfrac{1}{4!} z +\dfrac{1}{5!} z^{2} +\dfrac{1}{6!} z^{3} +\cdots \end{aligned}$$

The general power series representation of \(\varphi \)-functions is

$$\begin{aligned}&\varphi _{ m} ( z )\ \equiv \ \sum _{k = 0}^{\infty } \dfrac{z^{ k}}{( m +k )!}. \end{aligned}$$

The exponential definitions of \(\varphi _{ m} ( z )\) should not be used for practical simulations, because of severe cancelation errors for \(z \ll 1\). Efficient methods for computation of \(\varphi \)-functions have been developed based on PadÉ-type expansions, to give an example, MATLAB’s function expm() is based on such approximations (Cox and Matthews 2002).

Case V: For a general case of linear boundary conditions, the solution of problem Eq. (24) is:

$$\begin{aligned} a ( t; \nu ) =\mathrm {e}^{ ( t -t_{0} ) \mathcal {A}(\nu )} a_{0} +&\underbrace{\int _{t_{0}}^{t} \mathrm {e}^{ (t -\tau ) \mathcal {A}(\nu )} {b}( \tau ; \nu ) \mathrm {d}\tau }_{(I)}. \end{aligned}$$

To exploit the last formula, one might employ a quadrature formula to discretize the integral (I):

$$\begin{aligned} a ( t; \nu ) =\mathrm {e}^{ ( t -t_{0} ) \mathcal {A}(\nu )} a_{0} +\Delta t \sum ^{m}_{j =1} \mathrm {e}^{ ( t -t_{0} ) \mathcal {A}(\nu )} \cdot {b}( \tau _{ j} ; \nu ), \quad \Delta t\ \mathop {\ {\mathop {:=}\limits ^{\mathrm {def}}}\ }\ \frac{t -t_{0}}{m}, \end{aligned}$$

where we employed rectangle formula for simplicity. We note that the sequence \(\{\mathrm {e}^{ \Delta t \mathcal {A}(\nu )} \}_{j=1}^{m}\) can be entirely computed in an efficient manner (Al-Mohy and Higham 2011).

Case VI: Considering a general nonlinear case of boundary conditions from problem Eq. (24) and the general solution Eq. (25). To exploit a better solution, we can develop the function \(\tau \mapsto {b}(\tau , a(\tau ); \nu )\) in Taylor expansion series and integrate it exactly:

$$\begin{aligned} a ( t; \nu ) =\mathrm {e}^{ ( t -t_{0} ) \mathcal {A}(\nu )} a_{0} +\sum ^{\infty }_{k =1} ( t -t_{0} )^{k} \varphi _{ k} \Bigl ( ( t-t_{0} ) \mathcal {A}(\nu ) \Bigr ) a_{k} , \end{aligned}$$

where

$$\begin{aligned} a_{k}\ \mathop {\ {\mathop {:=}\limits ^{\mathrm {def}}}\ }\ \left. \dfrac{\mathrm {d}^{ k - 1}}{\mathrm {d}t^{ k - 1}}\ {b}\Bigl ( t, a(t);\nu \Bigr ) \right| _{ t =t_{0}} . \end{aligned}$$

Finally, the series solution can be exploited by truncating it at some finite order:

$$\begin{aligned} a ( t; \nu ) =\mathrm {e}^{ ( t -t_{0} ) \mathcal {A}(\nu )} a_{0} +\sum _{k =1}^{K} ( t -t_{0} )^{k} \varphi _{k} \Bigl ( ( t -t_{0} ) \mathcal {A}(\nu ) \Bigr ) a_{k} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparin, S., Berger, J., Dutykh, D. et al. Advanced Reduced-Order Models for Moisture Diffusion in Porous Media. Transp Porous Med 124, 965–994 (2018). https://doi.org/10.1007/s11242-018-1106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1106-2

Keywords

Navigation