Skip to main content
Log in

Study of Dispersion in Porous Media by Pulsed Field Gradient NMR: Influence of the Fluid Rheology

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Pulsed field gradient nuclear magnetic resonance (PFG-NMR) is used to measure the molecular displacements for the flow of a fluid through a capillary tube and a packed bed made of monodisperse PMMA beads. The molecules average displacement is studied using both the formalism of propagators and the cumulant method. In the Poiseuille case, the dispersion coefficients determined by the cumulant method compare satisfactorily with the theoretical values obtained. The technique is then extended to study the flow through a porous medium. We thus analyze Newtonian (water) and non-Newtonian (Xanthan) flows and put a particular emphasis on comparing the dispersion mechanisms between Newtonian and non-Newtonian fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Auriault, J.L., Adler, P.M.: Taylor dispersion in porous media: analysis by multiple scale expansions. Adv. Water Resour. 18(4), 211–226 (1995)

    Article  Google Scholar 

  • Bacri, J.C., Leygnac, C., Salin, D.: Study of miscible fluid flows in a porous medium by an acoustical method. J. Phys. Lett. 45(15), 767–774 (1984)

    Article  Google Scholar 

  • Bacri, J.C., Salin, D.: Sound velocity of a sandstone saturated with oil and brine at different concentrations. Geophys. Res. Lett. 13(4), 326–328 (1986)

    Article  Google Scholar 

  • Bartholdi, E., Ernst, R.: Fourier spectroscopy and the causality principle. J. Magn. Reson. 11, 9–19 (1973)

    Google Scholar 

  • Brigham, W.E., Reed, P.W., Dew, J.N.: Experiments on mixing during miscible displacement in porous media. Soc. Petrol. Eng. J. 1(1), 1–8 (1961)

    Article  Google Scholar 

  • Codd, S.L., Manz, B., Seymour, J.D., Callaghan, P.T.: Taylor dispersion and molecular displacements in Poiseuille flow. Phys. Rev. E 60, R3491–3494 (1999)

    Article  Google Scholar 

  • Cotts, R.M., Hoch, M.J.R., Sun, T., Markert, J.T.: Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J. Magn. Reson. 83, 252–266 (1989)

    Google Scholar 

  • Delgado, J.M.P.Q.: A critical review of dispersion in packed beds. Heat Mass Transf. 42, 279–310 (2006)

    Article  Google Scholar 

  • Didierjean, S., Souto, H.P.A., Delannay, R., Moyne, C.: Dispersion in periodic porous media: experience versus theory for two-dimensional systems. Chem. Eng. Sci. 52(12), 1861–1874 (1997)

    Article  Google Scholar 

  • Ebel, A., Dreher, W., Leibfritz, D.: Effects of zero-filling and apodization on spectral integrals in discrete Fourier-transform spectroscopy of noisy data. J. Magn. Reson. 182, 330–338 (2006)

    Article  Google Scholar 

  • Ferrari, M., Merel, J.P., Leclerc, S., Moyne, C., Stemmelen, D.: Study of dispersion by NRM: comparison between nmr measurements and stochastic simulation. Diffus. Fundam. 18(11), 1–4 (2013)

    Google Scholar 

  • Han, N.W., Bhakta, J., Carbonell, R.G.: Longitudinal and lateral dispersion in packed beds: effect of column length and particle size distribution. AIChE J. 32(2), 277–288 (1985)

    Article  Google Scholar 

  • Harleman, R.D., Rumer, R.R.: Longitudinal and lateral dispersion in an isotropic porous medium. J. Fluid Mech. 16(3), 385–394 (1963)

    Article  Google Scholar 

  • Holland, D.J., Scheven, U.M., Middelberg, A.P.J., Gladden, L.F.: Quantifying transport within a porous medium over a hierarchy of length scales. Phys. Fluids 18(3), 033102 (2006)

    Article  Google Scholar 

  • Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II, vol. 31, 2nd edn, Springer Series in Solid-State Sciences (1991)

  • Kutsovsky, Y.E., Scriven, L.E., Davis, H.T., Hammer, B.E.: Nmr imaging of velocity profiles and velocity distributions in bead packs. Phys. Fluids 8(4), 863–871 (1996)

    Article  Google Scholar 

  • Lebon, L., Leblond, J.: Les écoulements par RMN à gradient pulsé. Revue de l’Institut Français du Pétrole 53(4), 501–506 (1998)

    Article  Google Scholar 

  • Lebon, L., Leblond, J., Hulin, J.P.: Experimental measurement of dispersion processes at short times using a pulsed field gradient NMR technique. Phys. Fluids 9(3), 481–490 (1997)

    Article  Google Scholar 

  • Manz, B., Alexander, P., Gladden, L.F.: Correlations between dispersion and structure in porous media probed by nuclear magnetic resonance. Phys. Fluids 11(2), 259–267 (1999)

    Article  Google Scholar 

  • Odling, N.W., Elphick, S.C., Meredith, P., Main, I., Ngwenya, B.T.: Laboratory measurement of hydrodynamic saline dispersion within a micro-fracture network induced in granite. Earth Planet. Sci. Lett. 260(3–4), 407–418 (2007)

    Article  Google Scholar 

  • Pastor, M.V., Costell, E., Izquierdo, L., Durán, L.: Effects of concentration, pH and salt content on flow characteristics of xanthan gum solutions. Food Hydrocoll. 8(3), 265–275 (1994)

    Article  Google Scholar 

  • Payne, L.W., Parker, H.W.: Axial dispersion of non-Newtonian fluids in porous media. AIChE J. 19(1), 202–204 (1973)

    Article  Google Scholar 

  • Salles, J., Thovert, J.F., Delannay, R., Prevors, L., Auriault, J.L., Adler, P.M.: Taylor dispersion in porous media. Determinaion of the dispersion tensor. Phys. Fluids A 5(10), 2348–2376 (1993)

    Article  Google Scholar 

  • Scheven, U.M., Crawshaw, J.P., Anderson, V.J., Harris, R., Johns, M.L., Gladden, L.F.: A cumulant analysis for non-gaussian displacement distributions in Newtonian and non-Newtonian flows through porous media. Magn. Reson. Imaging 25, 513–516 (2007)

    Article  Google Scholar 

  • Scheven, U.M., Sen, P.N.: Spatial and temporal coarse graining for dispersion in randomly packed spheres. Phys. Rev. Lett. 89, 254501–254504 (2002)

    Article  Google Scholar 

  • Scheven, U.M., Verganelakis, D., Harris, R., Johns, M.L., Gladden, L.F.: Quantitative nuclear magnetic resonance measurements of preasymptotic dispersion in flow through porous media. Phys. Fluids 17(11), 1171071–1171077 (2005)

    Article  Google Scholar 

  • Seymour, J.D., Callaghan, P.T.: Generalized approach to NMR analysis of flow and dispersion in porous media. AIChE J. 43(8), 2096–2111 (1997)

    Article  Google Scholar 

  • Sharp, M.K.: Shear-augmented dispersion in non-Newtonian fluids. Ann. Biomed. Eng. 21(4), 407–415 (1993)

    Article  Google Scholar 

  • Souto, H.P.A., Moyne, C.: Dispersion in two-dimensional periodic porous media. Part 2: dispersion tensor. Phys. Fluids 9(8), 2253–2263 (1997)

    Article  Google Scholar 

  • Stapf, S., Packer, K.J., Graham, R.G., Thovert, J.F., Adler, P.M.: Spatial correlations and dispersion for fluid transport through packed glass beads studied by pulsed field-gradient NMR. Phys. Rev. E 58(5), 6206–6221 (1998)

    Article  Google Scholar 

  • Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)

    Article  Google Scholar 

  • Stepišnik, J.: Analysis of NMR self-diffusion measurements by a density-matrix calculation. Physica B + C 104(3), 350–364 (1981). https://doi.org/10.1016/0378-4363(81)90182-0

    Article  Google Scholar 

  • Tallarek, U., van Dusschoten, D., Van As, H., Bayer, E., Guiochon, G.: Study of transport phenomena in chromatographic columns by pulsed field gradient NMR. J. Phys. Chem. B 102(18), 3486–3497 (1998)

    Article  Google Scholar 

  • Tanner, J.E.: Use of the stimulated echo in NMR diffusion studies. J. Chem. Phys. 52(5), 2523–2526 (1970)

    Article  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol. 16. Springer, Berlin (2013)

    Google Scholar 

  • Van Den Broeck, C.: A stochastic description of longitudinal dispersion in uniaxial flows. Physica A 112(1–2), 343–352 (1982)

    Article  Google Scholar 

  • Vartuli, M., Hulin, J.P., Daccord, G.: Taylor dispersion in a polymer-solution flowing in a capillary-tube. AIChE J. 41(7), 1622–1628 (1995). https://doi.org/10.1002/aic.690410703

    Article  Google Scholar 

  • Voigt, C.G., Hayes, R.E., Tanguy, P.A.: A study of two-dimensional dispersion in unconsolidated porous media. Transp. Porous Media 5(3), 269–286 (1990)

    Article  Google Scholar 

  • Wen, C.Y., Yim, J.: Axial dispersion of non-Newtonian liquid in a packed bed. AIChE J. 17(6), 1503–1504 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maude Ferrari.

A Appendix

A Appendix

1.1 A.1 Homogenization analysis of the Taylor’s tube

The transport equation in a Taylor’s tube of radius R is written at the microscopic scale:

$$\begin{aligned} \displaystyle \frac{\partial c}{\partial t} + u(r) \displaystyle \frac{\partial c}{\partial z} = \mathscr {D}_{0} \left[ \displaystyle \frac{1}{r} \displaystyle \frac{\partial }{\partial r} \left( r \displaystyle \frac{\partial c}{\partial r}\right) + \displaystyle \frac{\partial ^{2}c}{\partial z^{2}}\right] \end{aligned}$$
(20)

with the following boundary conditions:

$$\begin{aligned} r = R , \quad \displaystyle \frac{\partial c}{\partial r} = 0 \end{aligned}$$
(21)

This equation is put in dimensionless form with \(r^{*}= r/R\), \(z^{*}= z/L\), \(\epsilon = R /L\), \(t^{*} = u_{m} \, t / L\), \(u^{*} = u / u_{m} \) where \(u_{m}\) is the average flow. All unknowns without dimension are of order \(\mathscr {O}(1)\) except \(\epsilon \) which is a small parameter. The important choice is \(t^{*}\): the characteristic time at the macroscopic scale of the process is the convective time \(L/u_{m}\). Therefore:

$$\begin{aligned} \displaystyle \frac{\partial c}{\partial t^{*}} + u^{*}(r^{*}) \displaystyle \frac{\partial c}{\partial z^{*}} = \displaystyle \frac{1}{\mathrm{Pe}} \left[ \epsilon \, \displaystyle \frac{\partial ^{2}c}{\partial {z^{*}}^{2}} + \displaystyle \frac{1}{\epsilon } \ \displaystyle \frac{1}{r^{*}} \displaystyle \frac{\partial }{\partial r^{*}} \left( r^{*} \displaystyle \frac{\partial c}{\partial r^{*}}\right) \right] \end{aligned}$$
(22)

The order of magnitude of the Péclet number \({\mathrm{Pe}} = u_{m} R / \mathscr {D}_{0}\) appearing in Eq. (22) has to be given. In the case of the Taylor dispersion, we assume that at the microscopic scale, the diffusion transport time (\(\simeq R^{2}/\mathscr {D}_{0}\)) and convective transport time (\(\simeq R / u_{m}\)) are of the same order of magnitude and therefore \({\mathrm{Pe}} = \mathscr {O}(1)\).

We then search the concentration c in the form of a power series expansion of the small parameter \(\epsilon \):

$$\begin{aligned} c = \sum _{m=0}^{+\infty } c^{(m)} \left( t^{*}, r^{*}, z^{*} \right) \ \epsilon ^{m} \end{aligned}$$
(23)

At the order \(\mathscr {O}(\epsilon ^{-1})\), the problem is written as:

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{1}{r^{*}} \displaystyle \frac{\partial }{\partial r^{*}} \left( r^{*} \displaystyle \frac{\partial c^{(0)}}{\partial r^{*}}\right) = 0\\ r^{*} = 1 \quad \displaystyle \frac{\partial c^{(0)}}{\partial r^{*}} = 0 \end{array}\right. \end{aligned}$$
(24)

The concentration \(c^{(0)}\) does not depend on r: \(c^{(0)} (t^{*}, r^{*}, z^{*}) = c^{(0)} (t^{*}, z^{*})\). At the next order \(\mathscr {O}(\epsilon ^{0})\), the problem is written as:

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{\partial c^{(0)}}{\partial t^{*}} + u^{*} \displaystyle \frac{\partial c^{(0)}}{\partial z^{*}} = \displaystyle \frac{1}{\mathrm{Pe}} \ \displaystyle \frac{1}{r^{*}} \displaystyle \frac{\partial }{\partial r^{*}} \left( r^{*} \displaystyle \frac{\partial c^{(1)}}{\partial r^{*}}\right) \\ r^{*}=1 \qquad \displaystyle \frac{\partial c^{(1)}}{\partial r^{*}} = 0 \end{array}\right. \end{aligned}$$
(25)

Averaging Eq. (25) on the tube section leads to

$$\begin{aligned} \displaystyle \frac{\partial c^{(0)}}{\partial t^{*}} + \displaystyle \frac{\partial c^{(0)}}{\partial z^{*}} = 0 \end{aligned}$$
(26)

The transport of \(c^{(0)}\) at the first order of approximation is thus purely convective with the average velocity \(u_{m}\). Equation (25) could then be written using (26) to express the time derivative:

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{1}{\mathrm{Pe}} \ \displaystyle \frac{1}{r^{*}} \displaystyle \frac{\partial }{\partial r^{*}} \left( r^{*} \displaystyle \frac{\partial c^{(1)}}{\partial r^{*}}\right) = \left( u^{*}-1\right) \displaystyle \frac{\partial c^{(0)}}{\partial z^{*}}\\ r^{*}=1 \quad \displaystyle \frac{\partial c^{(1)}}{\partial r^{*}}= 0 \end{array}\right. \end{aligned}$$
(27)

The only non-homogeneous term of Eq. (27) in \(c^{(1)}\) is the term in \(\displaystyle \frac{\partial c^{(0)}}{\partial z^{*}}\). \(c^{(1)}\) is therefore searched in the form \(c^{(1)}(t^{*}, r^{*}, z^{*}) = f(r^{*}) \, \displaystyle \frac{\partial c^{(0)}}{\partial z^{*}}(t^{*}, z^{*}) + \widehat{c}^{\, (1)}(t^{*}, z^{*})\) within an integration constant \(\widehat{c}^{\, (1)}\) function of \(t^{*}\) and \(z^{*}\). f is solution of:

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{1}{r^{*}} \displaystyle \frac{\partial }{\partial r^{*}} \left( r^{*} \displaystyle \frac{\partial f}{\partial r^{*}}\right) = {\mathrm{Pe}} \left( u^{*} - 1 \right) \\ r^{*}=1 \quad \displaystyle \frac{\partial f}{\partial r^{*}} = 0 \end{array} \right. \end{aligned}$$
(28)

where for a circular tube and a power-law fluid

$$\begin{aligned} u^{*} = \displaystyle \frac{3n+1}{n+1} \left( 1-{r^{*}}^{1+{\frac{1}{n}}}\right) \end{aligned}$$
(29)

Integration of Eq. (28) leads to (the remaining integration constant is calculated requiring that the average value of f over the section is null):

$$\begin{aligned} f(r^{*}) = {\mathrm{Pe}} \left[ - \displaystyle \frac{n(7n+1)}{4(3n+1)(5n+1)} + \displaystyle \frac{n^{2}}{2(n+1)} {r^{*}}^{2} - \displaystyle \frac{n^{2}}{(n+1)(3n+1)} {r^{*}}^{3+{\frac{1}{n}}} \right] \end{aligned}$$
(30)

such as (with \(\langle (-) \rangle = 1/S \int _{S} (-) {~\mathrm d} S\)

$$\begin{aligned} c^{(1)} = \langle c^{(1)} \rangle (t^{*}, z^{*}) + f(r^{*}) \displaystyle \frac{\partial c^{(0)}}{\partial z^{*}} (t^{*}, z^{*}) \end{aligned}$$
(31)

At the order \(\mathscr {O}(\epsilon )\), the equation is written as:

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{\partial c^{(1)}}{\partial t^{*}} + u^{*} \displaystyle \frac{\partial c^{(1)}}{\partial z^{*}} = \displaystyle \frac{1}{\mathrm{Pe}} \left[ \, \displaystyle \frac{\partial ^{2}c^{(0)}}{\partial {z^{*}}^{2}} + \displaystyle \frac{1}{r^{*}} \displaystyle \frac{\partial }{\partial r^{*}} \left( r^{*} \displaystyle \frac{\partial c^{(2)}}{\partial r^{*}}\right) \right] \\ r^{*}=1 \quad \displaystyle \frac{\partial c^{(2)}}{\partial r^{*}} = 0 \end{array}\right. \end{aligned}$$
(32)

Averaging in r leads to:

$$\begin{aligned} \displaystyle \frac{\partial \langle c^{(1)}\rangle }{\partial t^{*}} + \left\langle u^{*} \displaystyle \frac{\partial c^{(1)}}{\partial z^{*}}\right\rangle = \displaystyle \frac{1}{\mathrm{Pe}} \, \displaystyle \frac{\partial ^{2}c^{(0)}}{\partial {z^{*}}^{2}} \end{aligned}$$
(33)

Adding Eqs. (26) and (33) using relation (31) leads to

$$\begin{aligned} \displaystyle \frac{\partial }{\partial t^{*}} \left( c^{(0)} + \langle c^{(1)}\rangle \right) + \displaystyle \frac{\partial }{\partial z^{*}} \left( c^{(0)} + \langle c^{(1)}\rangle \right)= & {} \left[ \displaystyle \frac{1}{\mathrm{Pe}} - \left\langle u^{*} \, f \right\rangle \right] \displaystyle \frac{\partial ^{2}c^{(0)}}{\partial {z^{*}}^{2}} \end{aligned}$$
(34)
$$\begin{aligned} \text{ As }\quad - \left\langle u^{*} \, f \right\rangle = -2 \int _{r^{*}=0}^{1} u^{*} f(r^{*}) \, r^{*} \, \mathrm{d} r^{*}= & {} \displaystyle \frac{n^{2}}{2(3n+1)(5n+1)} \ {\mathrm{Pe}} \end{aligned}$$
(35)

the average equation is finally written for \(\langle c\rangle = c^{(0)} + \langle c^{(1)} \rangle \)

$$\begin{aligned} \displaystyle \frac{\partial \langle c\rangle }{\partial t} + u_{m} \displaystyle \frac{\partial \langle c\rangle }{\partial z}= & {} D_T \displaystyle \frac{\partial ^{2} \langle c\rangle }{\partial z^{2}} + \mathscr {O}\left( \epsilon ^{2} \displaystyle \frac{u_{m} \, \langle c \rangle }{L}\right) \end{aligned}$$
(36)
$$\begin{aligned} \text{ with } \displaystyle \frac{D_T}{\mathscr {D}_{0}}= & {} 1 + \displaystyle \frac{n^{2}}{2(3n+1)(5n+1)} \mathrm{Pe^{2}} \end{aligned}$$
(37)

The same result can be obtained by other methods (see for example Vartuli et al. 1995). The method presented above has the advantage of an easy extension to the general case of a porous medium (Auriault and Adler 1995). Note that in the Newtonian case, \(n=1\), the classical Taylor result \(D_T/\mathscr {D}_{0} = 1 + \mathrm{Pe}^{2}/48\) is recovered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, M., Moyne, C. & Stemmelen, D. Study of Dispersion in Porous Media by Pulsed Field Gradient NMR: Influence of the Fluid Rheology. Transp Porous Med 123, 101–124 (2018). https://doi.org/10.1007/s11242-018-1027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1027-0

Keywords

Navigation