Skip to main content
Log in

A Pedagogical Approach to the Thermodynamically Constrained Averaging Theory

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The thermodynamically constrained averaging theory (TCAT) is an evolving approach for formulating macroscale models that are consistent with both microscale physics and thermodynamics. This consistency requires some mathematical complexity, which can be an impediment to understanding and efficient application of this model-building approach for the non-specialist. To aid understanding of the TCAT approach, a simplified model formulation approach is developed and used to show a more compact, but less general, formulation compared to the standard TCAT approach. This new simplified model formulation approach is applied to the case of binary species diffusion in a single-fluid-phase porous medium system, clearly showing a TCAT approach that is applicable to many other systems as well. Recent extensions to the TCAT approach that enable a priori parameter estimation, and approaches to leverage available TCAT modeling building results are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

b :

Entropy source density

C :

Species concentration in an entity

\(\hat{\varvec{\mathsf {D}}}\) :

Effective diffusivity tensor

\({{\hat{\varvec{\mathsf {D}}}}}^{ABw}\) :

Second-rank symmetric closure tensor for a binary system

\(\varvec{\mathsf {d}}\) :

Rate of strain tensor

\({\mathcal E}_{**}^{{\overline{\overline{w}}}}\) :

Particular material derivative form of a macroscale entity total energy conservation equation, Eq. (10)

\({\mathcal G}_{**}^{{\overline{\overline{w}}}}\) :

Particular material derivative form of a macroscale body force potential balance equation, Eq. (11)

h :

Energy source density

\({\varvec{\mathsf {I}}}\) :

Identity tensor

\(\mathcal {J}_s\) :

Index set of species

i :

Species qualifier

\(K_{E}\) :

Kinetic energy term due to velocity fluctuations

\({\mathcal M}_{**}^{{\overline{\overline{{i}w}}}}\) :

Particular material derivative form of a macroscale species mass conservation equation, Eq. (9)

\(MW_i\) :

Molecular weight of species i

\(MW_w\) :

Molecular weight for entity w

p :

fluid pressure

\(\mathbf {q}\) :

Non-advective energy flux vector

\(\mathbf {q}_{\mathbf {g}0}\) :

Non-advective energy flux vector due to the product of fluctuations

R :

Ideal gas constant

\({\mathcal S}_{**}^{{\overline{\overline{w}}}}\) :

Particular material derivative form of a macroscale entropy balance, Eq. (12)

\({\mathcal T}_*^{{\overline{\overline{w}}}}\) :

Particular material derivative form of a macroscale differential thermodynamic equation, Eq. (13)

\({\mathcal T}_{{\mathcal G}*}^{{\overline{\overline{w}}}}\) :

Particular material derivative form of the body source potential equation, Eq. (14)

t :

Time

\({{\mathbf {u}}^{\,{}}_{}}\) :

Species deviation velocity vector

\(\mathbf {v}\) :

Velocity vector

x :

Mole fraction of a species in an entity

\({{\hat{{\gamma }}}}\) :

Macroscale activity coefficient

\({{{\epsilon }^{{\overline{\overline{{{\alpha }}}}}}}}\) :

Specific entity measure of the \({{\alpha }}\) entity (volume fraction, specific interfacial area)

\(\eta \) :

Entropy density

\({\theta }\) :

Temperature

\({\Lambda }\) :

Entropy production rate density

\({\lambda }_{\mathcal E}^w\) :

Lagrange multiplier for energy conservation equation

\({\lambda }_{{\mathcal G}}^w\) :

Lagrange multiplier for potential energy balance equation

\({\lambda }_{{\mathcal M}}^{{i}w}\) :

Lagrange multiplier for mass conservation equation

\({\lambda }_{{\mathcal M}_{i}}\) :

Is a constant related to the sum of potentials

\({\lambda }_{{\mathcal T}}^w\) :

Lagrange multiplier for thermodynamic equation

\({\lambda }_{{\mathcal T}{\mathcal G}}^w\) :

Lagrange multiplier for derivative of potential energy equation

\(\mu \) :

Chemical potential

\(\mu _0\) :

Reference chemical potential

\(\rho \) :

Mass density

\(\mathbf {\varphi }\) :

Non-advective entropy density flux vector

\(\psi \) :

Body force potential per unit mass (e.g., gravitational potential)

\({{\Omega }_{}}\) :

Spatial domain

\({{\Omega }_{}}_w\) :

Domain occupied by the wetting phase in the REV

\({{\omega }_{{}{}}}\) :

Mass fraction of a species in an entity

A :

Species qualifier (subscript, superscript)

B :

Species qualifier (subscript, superscript)

\({\mathcal E}\) :

Energy equation qualifier (subscript)

\({\mathcal G}\) :

Potential equation qualifier (subscript)

\({i}\) :

General index denoting a species (subscript, superscript)

\({\mathcal M}\) :

Mass equation qualifier (subscript)

s :

Index that indicates a solid phase (subscript, superscript)

\({\mathcal T}\) :

Thermodynamic equation qualifier (subscript)

\({\mathcal T}{\mathcal G}\) :

Fluid potential energy identity qualifier (subscript)

w :

Entity index corresponding to the wetting phase (subscript, superscript)

\(\overline{\ }\) :

Above a superscript refers to a density weighted macroscale average

\(\overline{\overline{\ }}\) :

Above a superscript refers to a uniquely defined macroscale average

\({{{\left\langle f \right\rangle _{{{\Omega }_{{{\alpha }}}},{{\Omega }_{}},w}}}}\) :

Averaging operator, \(\int _{{\Omega }_{{{\alpha }}}}wf\, \mathrm {d}\mathfrak {r}/\int _{{{\Omega }_{}}} w\, \mathrm {d}\mathfrak {r}\)

\(\mathrm {D}^{}_{{}}/\mathrm {D}t\) :

Material derivative

\(\text{ CEI }\) :

Constrained entropy inequality

\(\text{ EI }\) :

Entropy inequality

\(\text{ MVA }\) :

Method of volume averaging

\(\text{ REV }\) :

Representative elementary volume

\(\text{ SEI }\) :

Simplified entropy inequality

\(\text{ TCAT }\) :

Thermodynamically constrained averaging theory

References

  • Ahmadi, A., Abbasian Arani, A.A., Lasseux, D.: Numerical simulation of two-phase inertial flow in heterogeneous porous media. Transp. Porous Media 84(1), 177–200 (2010). doi:10.1007/s11242-009-9491-1

    Article  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  • Davit, Y., Bell, C., Byrne, H., Chapman, L., Kimpton, L., Lang, G., Leonard, K., Oliver, J., Pearson, N., Shipley, R., Waters, S., Whiteley, J., Wood, B., Quintard, M.: Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare? Adv. Water Resour. 62, 178–206 (2013)

    Article  Google Scholar 

  • del Rio, J.A., Whitaker, S.: Electrohydrodynamics in porous media. Transp. Porous Media 44(2), 385–405 (2001). doi:10.1023/A:1010762226382

    Article  Google Scholar 

  • Dye, A.L., McClure, J.E., Gray, W.G., Miller, C.T.: Multiscale modeling of porous medium systems. In: Vafai, K. (ed.) Handbook of Porous Media, 3rd edn, pp. 3–45. Taylor and Francis, London (2015)

    Google Scholar 

  • Eidsath, A., Carbonell, R., Whitaker, S., Herrmann, L.: Dispersion in pulsed systems III: comparison between theory and experiments for packed beds. Chem. Eng. Sci. 38, 1803–1816 (1983)

    Article  Google Scholar 

  • Golfier, F., Wood, B.D., Orgogozo, L., Quintard, M., Bués, M.: Biofilms in porous media: development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions. Adv. Water Resour. 463–485(32), 3 (2009)

    Google Scholar 

  • Gray, W.G., Dye, A.L., McClure, J.E., Pyrak-Nolte, L.J., Miller, C.T.: On the dynamics and kinematics of two-fluid-phase flow in porous media. Water Resour. Res. 51(7), 5365–5381 (2015). doi:10.1002/2015wr016921

    Article  Google Scholar 

  • Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview. Adv. Water Resour. 28(2), 161–180 (2005)

    Article  Google Scholar 

  • Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for heat transport in single-fluid-phase porous media systems. J. Heat Transf. 131(10), 101002 (2009a). doi:10.1115/1.3160539

    Article  Google Scholar 

  • Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 5. Single-fluid-phase transport. Adv. Water Resour. 32(5), 681–711 (2009b)

    Article  Google Scholar 

  • Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 7. Single-phase megascale flow models. Adv. Water Resour. 32(8), 1121–1142 (2009c). doi:10.1016/j.advwatres.2009.05.010

  • Gray, W.G., Miller, C.T.: TCAT analysis of capillary pressure in non-equilibrium, two-fluid-phase, porous medium systems. Adv. Water Resour. 34(6), 770–778 (2011)

    Article  Google Scholar 

  • Gray, W.G., Miller, C.T.: Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Springer, Cham (2014). doi:10.1007/978-3-319-04010-3

    Book  Google Scholar 

  • Gray, W.G., Miller, C.T., Schrefler, B.A.: Averaging theory for description of environmental problems: What have we learned? Adv. Water Resour. 51, 123–138 (2013). doi:10.1016/j.advwatres.2011.12.005

    Article  Google Scholar 

  • Hager, J., Whitaker, S.: The thermodynamic significance of the local volume averaged temperature. Transp. Porous Media 46, 19–35 (2002)

    Article  Google Scholar 

  • Jackson, A.S., Miller, C.T., Gray, W.G.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 6. Two-fluid-phase flow. Adv. Water Resour. 32(6), 779–795 (2009)

    Article  Google Scholar 

  • Jackson, A.S., Rybak, I., Helmig, R., Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region models. Adv. Water Resour. 42, 71–90 (2012). doi:10.1016/j.advwatres.2012.01.006

    Article  Google Scholar 

  • Kischinhevsky, M., Paes-leme, P.J.: Modelling and numerical simulations of contaminant transport in naturally fractured porous media. Transp. Porous Media 26(1), 25–49 (1997). doi:10.1023/A:1006506328004

    Article  Google Scholar 

  • Miller, C.T., Gray, W.G.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 2. Foundation. Adv. Water Resour. 28(2), 181–202 (2005)

    Article  Google Scholar 

  • Miller, C.T., Gray, W.G.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 4. Species transport fundamentals. Adv. Water Resour. 31(3), 577–597 (2008)

    Article  Google Scholar 

  • Nozad, I., Carbonell, R.G., Whitaker, S.: Heat conduction in multiphase systems I: theory and experiment for two-phase systems. Chem. Eng. Sci. 40, 843–855 (1985)

    Article  Google Scholar 

  • Ochoa-Tapia, A.J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I: theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995)

    Article  Google Scholar 

  • Ostvar, S., Wood, B.D.: A non-scale-invariant form for coarse-grained diffusion-reaction equations. J. Chem. Phys. 145(11), 114105 (2016). doi:10.1063/1.4962421

    Article  Google Scholar 

  • Perović, N., Frisch, J., Salama, A., Sun, S., Rank, E., Mundani, R.P.: Multi-scale high-performance fluid flow: simulations through porous media. Adv. Eng. Softw. 103, 85–98 (2017). doi:10.1016/j.advengsoft.2016.07.016

    Article  Google Scholar 

  • Plumb, O.A., Whitaker, S.: Diffusion, adsorption and dispersion in porous media: small-scale averaging and local volume averaging. In: Cushman, J.H. (ed.) Dynamics of Fluids in Hierarchical Porous Meida, pp. 97–148. Academic Press, New York (1990)

    Google Scholar 

  • Quintard, M., Whitaker, S.: Two-phase flow in heterogeneous porous media: the method of large-scale averaging. Transp. Porous Media 3(4), 357–413 (1988)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in chemically and mechanically heterogeneous porous media. I: theoretical development of region-averaged equations for slightly compressible single-phase flow. Adv. Water Resour. 19(1), 29–47 (1996)

    Article  Google Scholar 

  • Ryan, D., Carbonell, R., Whitaker, S.: Effective diffusivities for catalyst pellets under reactive conditions. Chem. Eng. Sci. 35, 10–16 (1980)

    Article  Google Scholar 

  • Rybak, I.V., Gray, W.G., Miller, C.T.: Modeling two-fluid-phase flow and species transport in porous media. J. Hydrol. 521, 565–581 (2015). doi:10.1016/j.jhydrol.2014.11.051

    Article  Google Scholar 

  • Valdés-Parada, F., Aguilar-Madera, C., Ochoa-Tapia, J., Goyeau, B.: Velocity and stress jump conditions between a porous medium and a fluid. Adv. Water Resour. 62, 327–339 (2013)

    Article  Google Scholar 

  • Valdés-Parada, F., Alvarez-Ramirez, J., Varela-Ham, J.: Upscaling pollutant dispersion in the mexico city metropolitan area. Physica A 391, 606–615 (2012)

    Article  Google Scholar 

  • Valdés-Parada, F., Porter, M., Narayanaswamy, K., Ford, R., Wood, B.: Upscaling microbial chemotaxis in porous media. Adv. Water Resour. 32, 1413–1428 (2009)

    Article  Google Scholar 

  • Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986)

    Article  Google Scholar 

  • Whitaker, S.: Derivation and application of the Stefan–Maxwell equations. Rev. Mex. Ing. Quím. 8(3), 213–243 (2009)

    Google Scholar 

  • Wood, B.D., Cherblanc, F., Quintard, M., Whitaker, S.: Volume averaging for determining the effective dispersion tensor: closure using periodic unit cells and comparison with ensemble averaging. Water Resour. Res. 39(8), 1210 (2003). doi:10.1029/2002WR001723

    Article  Google Scholar 

  • Wood, B.D., Quintard, M., Whitaker, S.: Calculation of effective diffusivities for biofilms and tissues. Biotechnol. Bioeng. 77(5), 495–516 (2002)

    Article  Google Scholar 

  • Wood, B.D., Whitaker, S.: Diffusion and reaction in biofilms. Chem. Eng. Sci. 53(3), 397–425 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The work of CTM was supported by Army Research Office grant W911NF-14-1-02877 and National Science Foundation grant 1619767. The contributions of BDW were supported by National Science Foundation, grant EAR-1521441. The efforts of W.G. Gray to review and comment on this work are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cass T. Miller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, C.T., Valdés-Parada, F.J. & Wood, B.D. A Pedagogical Approach to the Thermodynamically Constrained Averaging Theory. Transp Porous Med 119, 585–609 (2017). https://doi.org/10.1007/s11242-017-0900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0900-6

Keywords

Navigation