Skip to main content
Log in

Influence of Numerical Cementation on Multiphase Displacement in Rough Fractures

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present an application of 3D X-ray computed microtomography for studying the influence of numerical cementation on flow in a cement-lined rough-walled fracture. The imaged fracture geometry serves as input for flow modeling using a combination of the level set and the lattice Boltzmann methods to characterize the capillary-dominated fluid displacement properties and the relative permeability of the naturally cemented fracture. We further numerically add cement to the naturally cement-lined fracture to quantify the effect of increasing cement thickness and diminishing aperture on flow properties. Pore space geometric tortuosity and capillary pressure as a function of water saturation both increase with the numerically increased fracture cement thickness. The creation of unevenly distributed apertures and cement contact points during numerical cement growth causes the wetting and non-wetting fluids to impede each other, with no consistent trends in relative permeability with increasing saturation. Tortuosity of wetting and non-wetting fluid phases exhibits none to poor correlation with relative permeability and thus cannot be used to predict it, contrary to previous findings in smoother fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html.

  2. http://www.palabos.org.

  3. http://users.ices.utexas.edu/~masha/lsmpqs/

References

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)

    Google Scholar 

  • Becker, S.P., Eichhubl, P., Laubach, S.E., Reed, R.M., Lander, R.H., Bodnar, R.J.: A 48 m.y. history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas basin. Geol. Soc. Am. Bull. 122, 1081–1093 (2010)

    Article  Google Scholar 

  • Bons, P.D.: Development of crystal morphology during unitaxial growth in a progressively widening vein: I. The numerical model. J. Struct. Geol. 23, 865–872 (2001)

    Article  Google Scholar 

  • Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res. 92, 1337–1347 (1987)

    Article  Google Scholar 

  • Brown, S.R., Scholz, C.H.: Broad bandwidth study of the topography of natural rock surfaces. J. Geophys. Res. 90, 12575–12582 (1985)

    Article  Google Scholar 

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

  • Chen, C.-Y., Horne, R.N.: Two-phase flow in rough-walled fractures: experiments and a flow structure model. Water Resour. Res. 42, 17 (2006)

    Google Scholar 

  • Gangi, A.F.: Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 15, 249–257 (1978)

    Article  Google Scholar 

  • Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 1461 (2013)

    Article  Google Scholar 

  • Hilgers, C., Koehn, D., Bons, P.D., Urai, J.L.: Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins. J. Struct. Geol. 23, 873–885 (2001)

    Article  Google Scholar 

  • Hyman, J.D., Karra, S., Makedonska, N., Gable, C.W., Painter, S.L., Viswanathan, H.S.: dfnWorks: a discrete fracture network framework for modeling subsurface flow and transport. Comput. Geosci. 84, 10–19 (2015)

    Article  Google Scholar 

  • Jettestuen, E., Helland, J.O., Prodanović, M.: A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resour. Res. 49, 4645–4661 (2013)

    Article  Google Scholar 

  • Kang, Q., Lichtner, P.C., Viswanathan, H.S., Abdel-Fattah, A.I.: Pore scale modeling of reactive transport involved in geologic CO\(_2\) sequestration. Transp. Porous Media 82, 197–213 (2009)

    Article  Google Scholar 

  • Ketcham, R.A., Slottke, D.T., Sharp, J.M.: Three-dimensional measurement of fractures in heterogeneous materials using high-resolution X-ray computed tomography. Geosphere 6, 499–514 (2010)

    Article  Google Scholar 

  • Kozeny, J.: Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss. 136, 271–306 (1927)

  • Lander, R.H., Laubach, S.E.: Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones. Geol. Soc. Am. Bull. B31092.1 (2014)

  • Lander, R.H., Larese, R.E., Bonnell, L.M.: Toward more accurate quartz cement models: the importance of euhedral versus noneuhedral growth rates. AAPG Bull. 92, 1537–1563 (2008)

    Article  Google Scholar 

  • Landry, C.J., Karpyn, Z.T.: Single-phase lattice Boltzmann simulations of pore-scale flow in fractured permeable media. Int. J. Oil Gas Coal Technol. 5, 182–206 (2012)

    Article  Google Scholar 

  • Laubach, S.E., Reed, R.M., Olson, J.E., Lander, R.H., Bonnell, L.M.: Coevolution of crack-seal texture and fracture porosity in sedimentary rocks: cathodoluminescence observations of regional fractures. J. Struct. Geol. 26, 967–982 (2004)

    Article  Google Scholar 

  • Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 56, 462–478 (1994)

    Article  Google Scholar 

  • Lindquist, W.B., Lee, S.-M., Coker, D.A., Jones, K.W., Spanne, P.: Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J. Geophys. Res.: Solid Earth 101, 8297–8310 (1996)

    Article  Google Scholar 

  • Lindquist, W.B., Venkatarangan, A., Dunsmuir, J., Wong, T.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. 105, 21509–21527 (2000)

    Article  Google Scholar 

  • Matyka, M., Khalili, A., Koza, Z.: Tortuosity–porosity relation in porous media flow. Phys. Rev. E 78, 26306 (2008)

    Article  Google Scholar 

  • Méheust, Y., Schmittbuhl, J.: Geometrical heterogeneities and permeability anisotropy of rough fractures. J. Geophys. Res. 106, 2089 (2001)

    Article  Google Scholar 

  • Montemagno, C.D., Pyrak-Nolte, L.J.: Fracture network versus single fractures: measurement of fracture geometry with X-ray tomography. Phys. Chem. Earth Part A: Solid Earth Geod. 24, 575–579 (1999)

    Article  Google Scholar 

  • Motealleh, S., Bryant, S.L.: Quantitative mechanism for permeability reduction by small water saturation in tight-gas sandstones. SPE J. 14, 252–258 (2009)

  • Mousavi, M.A., Bryant, S.L.: Connectivity of pore space as a control on two-phase flow properties of tight-gas sandstones. Transp. Porous Media 94, 537–554 (2012)

    Article  Google Scholar 

  • Noiriel, C., Gouze, P., Madé, B.: Time-resolved 3D characterisation of flow and dissolution patterns in a single rough-walled fracture. In: S, J.M., Krásný, Jirí (eds.) Groundwater in Fractured Rocks, pp. 629–642. Taylor & Francis, Leiden (2007)

    Google Scholar 

  • Nollet, S., Urai, J.L., Bons, P.D., Hilgers, C.: Numerical simulations of polycrystal growth in veins. J. Struct. Geol. 27, 217–230 (2005)

    Article  Google Scholar 

  • Øren, P.-E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46, 311–343 (2002)

    Article  Google Scholar 

  • Pieters, D.A., Graves, R.M.: Fracture relative permeability: linear or non-linear function of saturation. In: International Petroleum Conference and Exhibition of Mexico Proceedings. Society of Petroleum Engineers, Veracruz, Mexico (1994)

  • Piri, M., Karpyn, Z.T.: Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. II: Results. Phys. Rev. E 76, 016316 (2007)

  • Prodanovic, M., Bryant, S.: A level set method for determining critical curvatures for drainage and imbibition. J. Colloid Interface Sci. 304, 442–458 (2006)

    Article  Google Scholar 

  • Prodanovic, M., Bryant, S.: Physics-driven interface modeling for drainage and imbibition in fractures. SPE J. 14, 532–542 (2009)

    Article  Google Scholar 

  • Prodanovic, M., Bryant, S.L., Karpyn, Z.T.: Investigating matrix/fracture transfer via a level set method for drainage and imbibition. SPE J. 15, 125–136 (2010)

    Article  Google Scholar 

  • Prodanović, M., Bryant, S.L., Davis, J.S.: Numerical simulation of diagenetic alteration and its effect on residual gas in tight gas sandstones. Transp. Porous Media 96, 39–62 (2013)

    Article  Google Scholar 

  • Prodanovic, M., Esteva, M., Hanlon, M., Nanda, G., Agarwal, P.: Digital Rocks Portal (2015). http://www.digitalrocksportal.org/

  • Prodanovic, M., Landry, C., Tokan-Lawal, A., Eichhubl, P.: Niobrara formation fracture. Digital Rocks Portal, The University of Texas at Austin (2016). doi:10.17612/P7SG6Z

  • Sahimi, M.: Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393–1534 (1993)

    Article  Google Scholar 

  • Scheidegger, A.E.: The Physics of Flow Through Porous Media. University of Toronto Press, Toronto (1974)

    Google Scholar 

  • Snow, D.T.: Anisotropic permeability of fractured media. Water Resour. Res. 5, 1273–1289 (1969)

  • Tatone, B.S.A., Grasselli, G.: An investigation of discontinuity roughness scale dependency using high-resolution surface measurements. Rock Mech. Rock Eng. 46, 657–681 (2012)

    Article  Google Scholar 

  • Tokan-Lawal, A., Prodanovic, M., Eichhubl, P.: Image-based modeling of flow in natural partially cemented fractures. In: Unconventional Resources Technology Conference Proceedings, URTeC paper number 1581613, SPE paper number 168805-MS. American Association of Petroleum Geologists, Society of Petroleum Engineers, Denver, CO, USA (2013)

  • Tokan-Lawal, A., Landry, C.J., Prodanovic, M., Eichhubl, P.: Understanding tortuosity and permeability variations in naturally fractured reservoirs: Niobrara formation. In: Unconventional Resources Technology Conference Proceedings, Paper number 1922870-MS. American Association of Petroleum Geologists, Society of Petroleum Engineers, Denver, CO, USA (2014)

  • Tokan-Lawal, A., Prodanović, M., Eichhubl, P.: Investigating flow properties of partially cemented fractures in Travis peak formation using image-based pore-scale modeling. J. Geophys. Res. Solid Earth 120, 2015JB012045 (2015)

    Article  Google Scholar 

  • Torskaya, T., Jin, G., Torres-Verdin, C.: Pore-level analysis of the relationship between porosity, irreducible water saturation, and permeability of clastic rocks. In: Proceedings of SPE Annual Technical Conference and Exhibition (2007)

  • Urai, J.L., Williams, P.F., van Roermund, H.L.M.: Kinematics of crystal growth in syntectonic fibrous veins. J. Struct. Geol. 13, 823–836 (1991)

    Article  Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16, 1016–1024 (1980)

    Article  Google Scholar 

  • Zimmerman, R.W., Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23, 1–30 (1996)

    Article  Google Scholar 

  • Zimmerman, R.W., Chen, G., Bodvarsson, G.S.: A Dual-Porosity Reservoir Model with an Improved Coupling Term. Lawrence Berkeley Lab, Berkeley (1992)

    Google Scholar 

Download references

Acknowledgments

We are grateful to Julia Gale for providing the fractured sample for analysis and the Shell-University of Texas Unconventional Resources (SUTUR) program for funding this work. We further thank Jessie Maisano at UTCT, High-Resolution X-ray Facility, The University of Texas at Austin (http://www.ctlab.geo.utexas.edu/) for imaging the sample, and Texas Advanced Computing Center (http://www.tacc.utexas.edu) for providing the computational resources. The software used in this work is available (see links provided in the text), and the dataset has been published online (Prodanovic et al. 2016). Publication authorized by the Director, Bureau of Economic Geology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maša Prodanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokan-Lawal, A., Prodanović, M., Landry, C.J. et al. Influence of Numerical Cementation on Multiphase Displacement in Rough Fractures. Transp Porous Med 116, 275–293 (2017). https://doi.org/10.1007/s11242-016-0773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0773-0

Keywords

Navigation