Transport in Porous Media

, Volume 116, Issue 1, pp 275–293 | Cite as

Influence of Numerical Cementation on Multiphase Displacement in Rough Fractures

  • Adenike Tokan-Lawal
  • Maša Prodanović
  • Christopher J. Landry
  • Peter Eichhubl
Article

Abstract

We present an application of 3D X-ray computed microtomography for studying the influence of numerical cementation on flow in a cement-lined rough-walled fracture. The imaged fracture geometry serves as input for flow modeling using a combination of the level set and the lattice Boltzmann methods to characterize the capillary-dominated fluid displacement properties and the relative permeability of the naturally cemented fracture. We further numerically add cement to the naturally cement-lined fracture to quantify the effect of increasing cement thickness and diminishing aperture on flow properties. Pore space geometric tortuosity and capillary pressure as a function of water saturation both increase with the numerically increased fracture cement thickness. The creation of unevenly distributed apertures and cement contact points during numerical cement growth causes the wetting and non-wetting fluids to impede each other, with no consistent trends in relative permeability with increasing saturation. Tortuosity of wetting and non-wetting fluid phases exhibits none to poor correlation with relative permeability and thus cannot be used to predict it, contrary to previous findings in smoother fractures.

Keywords

Rough fracture Cementation Fluid displacement Relative permeability Tortuosity 

Notes

Acknowledgments

We are grateful to Julia Gale for providing the fractured sample for analysis and the Shell-University of Texas Unconventional Resources (SUTUR) program for funding this work. We further thank Jessie Maisano at UTCT, High-Resolution X-ray Facility, The University of Texas at Austin (http://www.ctlab.geo.utexas.edu/) for imaging the sample, and Texas Advanced Computing Center (http://www.tacc.utexas.edu) for providing the computational resources. The software used in this work is available (see links provided in the text), and the dataset has been published online (Prodanovic et al. 2016). Publication authorized by the Director, Bureau of Economic Geology.

References

  1. Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)Google Scholar
  2. Becker, S.P., Eichhubl, P., Laubach, S.E., Reed, R.M., Lander, R.H., Bodnar, R.J.: A 48 m.y. history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas basin. Geol. Soc. Am. Bull. 122, 1081–1093 (2010)CrossRefGoogle Scholar
  3. Bons, P.D.: Development of crystal morphology during unitaxial growth in a progressively widening vein: I. The numerical model. J. Struct. Geol. 23, 865–872 (2001)CrossRefGoogle Scholar
  4. Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res. 92, 1337–1347 (1987)CrossRefGoogle Scholar
  5. Brown, S.R., Scholz, C.H.: Broad bandwidth study of the topography of natural rock surfaces. J. Geophys. Res. 90, 12575–12582 (1985)CrossRefGoogle Scholar
  6. Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)Google Scholar
  7. Chen, C.-Y., Horne, R.N.: Two-phase flow in rough-walled fractures: experiments and a flow structure model. Water Resour. Res. 42, 17 (2006)Google Scholar
  8. Gangi, A.F.: Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 15, 249–257 (1978)CrossRefGoogle Scholar
  9. Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 1461 (2013)CrossRefGoogle Scholar
  10. Hilgers, C., Koehn, D., Bons, P.D., Urai, J.L.: Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins. J. Struct. Geol. 23, 873–885 (2001)CrossRefGoogle Scholar
  11. Hyman, J.D., Karra, S., Makedonska, N., Gable, C.W., Painter, S.L., Viswanathan, H.S.: dfnWorks: a discrete fracture network framework for modeling subsurface flow and transport. Comput. Geosci. 84, 10–19 (2015)CrossRefGoogle Scholar
  12. Jettestuen, E., Helland, J.O., Prodanović, M.: A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resour. Res. 49, 4645–4661 (2013)CrossRefGoogle Scholar
  13. Kang, Q., Lichtner, P.C., Viswanathan, H.S., Abdel-Fattah, A.I.: Pore scale modeling of reactive transport involved in geologic CO\(_2\) sequestration. Transp. Porous Media 82, 197–213 (2009)CrossRefGoogle Scholar
  14. Ketcham, R.A., Slottke, D.T., Sharp, J.M.: Three-dimensional measurement of fractures in heterogeneous materials using high-resolution X-ray computed tomography. Geosphere 6, 499–514 (2010)CrossRefGoogle Scholar
  15. Kozeny, J.: Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss. 136, 271–306 (1927)Google Scholar
  16. Lander, R.H., Laubach, S.E.: Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones. Geol. Soc. Am. Bull. B31092.1 (2014)Google Scholar
  17. Lander, R.H., Larese, R.E., Bonnell, L.M.: Toward more accurate quartz cement models: the importance of euhedral versus noneuhedral growth rates. AAPG Bull. 92, 1537–1563 (2008)CrossRefGoogle Scholar
  18. Landry, C.J., Karpyn, Z.T.: Single-phase lattice Boltzmann simulations of pore-scale flow in fractured permeable media. Int. J. Oil Gas Coal Technol. 5, 182–206 (2012)CrossRefGoogle Scholar
  19. Laubach, S.E., Reed, R.M., Olson, J.E., Lander, R.H., Bonnell, L.M.: Coevolution of crack-seal texture and fracture porosity in sedimentary rocks: cathodoluminescence observations of regional fractures. J. Struct. Geol. 26, 967–982 (2004)CrossRefGoogle Scholar
  20. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 56, 462–478 (1994)CrossRefGoogle Scholar
  21. Lindquist, W.B., Lee, S.-M., Coker, D.A., Jones, K.W., Spanne, P.: Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J. Geophys. Res.: Solid Earth 101, 8297–8310 (1996)CrossRefGoogle Scholar
  22. Lindquist, W.B., Venkatarangan, A., Dunsmuir, J., Wong, T.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. 105, 21509–21527 (2000)CrossRefGoogle Scholar
  23. Matyka, M., Khalili, A., Koza, Z.: Tortuosity–porosity relation in porous media flow. Phys. Rev. E 78, 26306 (2008)CrossRefGoogle Scholar
  24. Méheust, Y., Schmittbuhl, J.: Geometrical heterogeneities and permeability anisotropy of rough fractures. J. Geophys. Res. 106, 2089 (2001)CrossRefGoogle Scholar
  25. Montemagno, C.D., Pyrak-Nolte, L.J.: Fracture network versus single fractures: measurement of fracture geometry with X-ray tomography. Phys. Chem. Earth Part A: Solid Earth Geod. 24, 575–579 (1999)CrossRefGoogle Scholar
  26. Motealleh, S., Bryant, S.L.: Quantitative mechanism for permeability reduction by small water saturation in tight-gas sandstones. SPE J. 14, 252–258 (2009)Google Scholar
  27. Mousavi, M.A., Bryant, S.L.: Connectivity of pore space as a control on two-phase flow properties of tight-gas sandstones. Transp. Porous Media 94, 537–554 (2012)CrossRefGoogle Scholar
  28. Noiriel, C., Gouze, P., Madé, B.: Time-resolved 3D characterisation of flow and dissolution patterns in a single rough-walled fracture. In: S, J.M., Krásný, Jirí (eds.) Groundwater in Fractured Rocks, pp. 629–642. Taylor & Francis, Leiden (2007)Google Scholar
  29. Nollet, S., Urai, J.L., Bons, P.D., Hilgers, C.: Numerical simulations of polycrystal growth in veins. J. Struct. Geol. 27, 217–230 (2005)CrossRefGoogle Scholar
  30. Øren, P.-E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46, 311–343 (2002)CrossRefGoogle Scholar
  31. Pieters, D.A., Graves, R.M.: Fracture relative permeability: linear or non-linear function of saturation. In: International Petroleum Conference and Exhibition of Mexico Proceedings. Society of Petroleum Engineers, Veracruz, Mexico (1994)Google Scholar
  32. Piri, M., Karpyn, Z.T.: Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. II: Results. Phys. Rev. E 76, 016316 (2007)Google Scholar
  33. Prodanovic, M., Bryant, S.: A level set method for determining critical curvatures for drainage and imbibition. J. Colloid Interface Sci. 304, 442–458 (2006)CrossRefGoogle Scholar
  34. Prodanovic, M., Bryant, S.: Physics-driven interface modeling for drainage and imbibition in fractures. SPE J. 14, 532–542 (2009)CrossRefGoogle Scholar
  35. Prodanovic, M., Bryant, S.L., Karpyn, Z.T.: Investigating matrix/fracture transfer via a level set method for drainage and imbibition. SPE J. 15, 125–136 (2010)CrossRefGoogle Scholar
  36. Prodanović, M., Bryant, S.L., Davis, J.S.: Numerical simulation of diagenetic alteration and its effect on residual gas in tight gas sandstones. Transp. Porous Media 96, 39–62 (2013)CrossRefGoogle Scholar
  37. Prodanovic, M., Esteva, M., Hanlon, M., Nanda, G., Agarwal, P.: Digital Rocks Portal (2015). http://www.digitalrocksportal.org/
  38. Prodanovic, M., Landry, C., Tokan-Lawal, A., Eichhubl, P.: Niobrara formation fracture. Digital Rocks Portal, The University of Texas at Austin (2016). doi:10.17612/P7SG6Z
  39. Sahimi, M.: Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393–1534 (1993)CrossRefGoogle Scholar
  40. Scheidegger, A.E.: The Physics of Flow Through Porous Media. University of Toronto Press, Toronto (1974)Google Scholar
  41. Snow, D.T.: Anisotropic permeability of fractured media. Water Resour. Res. 5, 1273–1289 (1969)Google Scholar
  42. Tatone, B.S.A., Grasselli, G.: An investigation of discontinuity roughness scale dependency using high-resolution surface measurements. Rock Mech. Rock Eng. 46, 657–681 (2012)CrossRefGoogle Scholar
  43. Tokan-Lawal, A., Prodanovic, M., Eichhubl, P.: Image-based modeling of flow in natural partially cemented fractures. In: Unconventional Resources Technology Conference Proceedings, URTeC paper number 1581613, SPE paper number 168805-MS. American Association of Petroleum Geologists, Society of Petroleum Engineers, Denver, CO, USA (2013)Google Scholar
  44. Tokan-Lawal, A., Landry, C.J., Prodanovic, M., Eichhubl, P.: Understanding tortuosity and permeability variations in naturally fractured reservoirs: Niobrara formation. In: Unconventional Resources Technology Conference Proceedings, Paper number 1922870-MS. American Association of Petroleum Geologists, Society of Petroleum Engineers, Denver, CO, USA (2014)Google Scholar
  45. Tokan-Lawal, A., Prodanović, M., Eichhubl, P.: Investigating flow properties of partially cemented fractures in Travis peak formation using image-based pore-scale modeling. J. Geophys. Res. Solid Earth 120, 2015JB012045 (2015)CrossRefGoogle Scholar
  46. Torskaya, T., Jin, G., Torres-Verdin, C.: Pore-level analysis of the relationship between porosity, irreducible water saturation, and permeability of clastic rocks. In: Proceedings of SPE Annual Technical Conference and Exhibition (2007)Google Scholar
  47. Urai, J.L., Williams, P.F., van Roermund, H.L.M.: Kinematics of crystal growth in syntectonic fibrous veins. J. Struct. Geol. 13, 823–836 (1991)CrossRefGoogle Scholar
  48. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)CrossRefGoogle Scholar
  49. Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16, 1016–1024 (1980)CrossRefGoogle Scholar
  50. Zimmerman, R.W., Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23, 1–30 (1996)CrossRefGoogle Scholar
  51. Zimmerman, R.W., Chen, G., Bodvarsson, G.S.: A Dual-Porosity Reservoir Model with an Improved Coupling Term. Lawrence Berkeley Lab, Berkeley (1992)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Bureau of Economic Geology, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA
  2. 2.Shell International Exploration and Production Inc.HoustonUSA
  3. 3.Center for Petroleum and Geosystems EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations