Skip to main content
Log in

Drying, Shrinkage, and Cracking of Cementitious Materials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Concrete is a heterogeneous, reactive, viscoelastic material whose shrinkage during drying often results in cracking that compromises its durability. This paper reviews the principles of shrinkage and stress development during drying of cement paste and concrete, taking particular account of the changes in microstructure as the cement hydrates, which profoundly influence the transport and mechanical properties of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Experimental observations and thermodynamic arguments (Flatt et al. 2011) indicate that hydration of cement is arrested below a relative humidity of about 80 %. However, during the time required to establish equilibrium following a desorption step below that value, the liquid may continue to react.

References

  • Acker, P.: Swelling, shrinkage and creep: a mechanical approach to cement hydration. Mater. Struct. 37(May), 237–243 (2004)

    Article  Google Scholar 

  • Barcelo, L., Kline, J., Walenta, G., Gartner, E.: Cement and carbon emissions. Mater. Struct. 47, 1055–1065 (2014)

    Article  Google Scholar 

  • Baroghel-Bouny, V.: Water vapour sorption experiments on hardened cementitious materials. Part I: essential tool for analysis of hygral behaviour and its relation to pore structure. Cem. Concr. Res. 37, 414–437 (2007a)

    Article  Google Scholar 

  • Baroghel-Bouny, V.: Water vapour sorption experiments on hardened cementitious materials. Part II: Essential tool for assessment of transport properties and for durability prediction. Cem. Concr. Res. 37, 438–454 (2007b)

    Article  Google Scholar 

  • Baroghel-Bouny, V., Mainguy, M., Lassabatere, T., Coussy, O.: Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem. Concr. Res. 29, 1225–1238 (1999)

    Article  Google Scholar 

  • Baroghel-bouny, V., Mainguy, M., Coussy, O.: Isothermal drying process in weakly permeable cementitious materials—assessment of water permeability. In: Hooton, R.D., Thomas, M.D.A., Marchand, J., Beaudoin, J.J. (eds.) Materials Science of Concrete Special Volume: Ion and Mass Transport in Cement-Based Materials, pp. 59–80. American Ceramic Society, Westerville (2001)

    Google Scholar 

  • Baroghel-Bouny, V., Mounanga, P., Khelidj, A., Loukili, A., Rafai, N.: Autogenous deformations of cement pastes Part II. W/C effects, micro-macro correlations, and threshold values. Cem. Concr. Res. 36, 123–136 (2006)

    Article  Google Scholar 

  • Barrett, J., Clement, C.: Kinetic evaporation and condensation rates and their coefficients. J. Colloid Interface Sci. 150(2), 352–364 (1992)

    Article  Google Scholar 

  • Bazant, Z.P., Ohtsubo, H., Aoh, K.: Stability and post-critical growth of a system of cooling or shrinkage cracks. Int. J. Fract. 15(5), 443–456 (1979)

    Article  Google Scholar 

  • Bazant, Z.P., Sener, S., Kim, J.-K.: Effect of cracking on drying permeability and diffusivity of concrete. ACI Mater. J. 84, 351–357 (1987)

    Google Scholar 

  • Beltzung, F., Wittmann, F.H.: Role of disjoining pressure in cement based materials. Cem. Concr. Res. 35, 2364–2370 (2005)

    Article  Google Scholar 

  • Bentz, D.P.: Curing with shrinkage-reducing admixtures: beyond drying shrinkage reduction. Concr. Int. 27(10), 55–60 (2005)

    Google Scholar 

  • Bentz, D.P., Weiss, W.J.: Internal curing: a 2010 state-of-the-art review. National Institute of Standards and Technology Internal Report, NISTIR 7765, February 2011

  • Bentz, D.P., Geiker, M.R., Hansen, K.K.: Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars. Cem. Concr. Res. 31, 1075–1085 (2001)

    Article  Google Scholar 

  • Beyea, S.D., Balcom, B.J., Bremner, T.W., Prado, P.J., Green, D.P., Armstrong, R.L., Grattan-Bellew, P.E.: Magnetic resonance imaging and moisture content profiles of drying concrete. Cem. Concr. Res. 28(3), 453–463 (1998)

    Article  Google Scholar 

  • Beyea, S.D., Balcom, B.J., Bremner, T.W., Armstrong, R.L., Grattan-Bellew, P.E.: Detection of drying-induced microcracking in cementitious materials with space-resolved \(^{1}\)H nuclear magnetic resonance relaxometry. J. Am. Ceram. Soc. 86(5), 800–805 (2003)

    Article  Google Scholar 

  • Bisschop, J., van Mier, J.G.M.: Effect of aggregates and microcracks on the drying rate of cementitious composites. Cem. Concr. Res. 38, 1190–1196 (2008)

    Article  Google Scholar 

  • Bisschop, J., Wittel, F.K.: Contraction gradient induced microcracking in hardened cement paste. Cem. Concr. Compos. 33, 466–473 (2011)

    Article  Google Scholar 

  • Brinker, C.J., Scherer, G.W.: Sol–Gel Science. Academic Press, New York (1990). Ch. 8

    Google Scholar 

  • Brun, M., Lallemand, A., Quinson, J.F., Eyraud, C.: A new method for the simultaneous determination of the size and the shape of pores: the thermoporometry. Thermochim. Acta 21, 59–88 (1977)

    Article  Google Scholar 

  • Bullard, J.W., Jennings, H.M., Livingstone, R.A., Nonat, A., Scherer, G.W., Schweitzer, J.S., Scrivener, K.L., Thomas, J.J.: Mechanisms of cement hydration. Cem. Concr. Res. 41, 1208–1223 (2011)

    Article  Google Scholar 

  • Carlson, R.W.: Drying shrinkage of concrete as affected by many factors. Proc. ASTM 38(2), 419–437 (1939). Discussion 438–440

    Google Scholar 

  • Chemmi, H., Petit, D., Levitz, P., Korb, J.-P., Bérard, M.: Impact of multi-scale moisture transport on durability of hardened cement pastes. Diffusion Fundamentals 10, 4.1–4.3 (2009)

    Google Scholar 

  • Coussy, O.: Mechanics and Physics of Porous Solids. Wiley, Chichester (2010)

    Book  Google Scholar 

  • Coussy, O., Dangla, P., Lassabatère, T., Baroghel-Bouny, V.: The equivalent pore pressure and the swelling and shrinkage of cement-based materials. Mater. Struct. 37, 15–20 (2004)

    Article  Google Scholar 

  • Espinosa, R.M.: Sorptionsisothermen von Zementstein und Mörtel. (Sorption isotherms for cement paste and mortar). Ph.D. thesis, Hamburg University of Technology, GCA-Verlag der GCA mbH, Herdecke, Germany (2004)

  • Feldman, R.F., Sereda, P.J.: Sorption of water on compacts of bottle-hydrated cement: I. The sorption and length-change isotherms; II. Thermodynamic considerations and theory of volume change. J. Appl. Chem. 14, 87–104 (1964)

    Article  Google Scholar 

  • Flatt, R.J., Scherer, G.W., Bullard, J.W.: Why alite stops hydrating below 80 % relative humidity. Cem. Concr. Res. 41, 987–992 (2011)

    Article  Google Scholar 

  • Gartner, E.M., Macphee, D.E.: A physico-chemical basis for novel cementitious binders. Cem. Concr. Res. 41(7), 736–749 (2011)

    Article  Google Scholar 

  • Grasley, Z.C., Rajagopal, K.R.: Revisiting total, matric, and osmotic suction in partially saturated geomaterials. Z. Angew. Math. Phys. 63(2), 373–394 (2012)

    Article  Google Scholar 

  • Geiker, M., Knudsen, T.: Chemical shrinkage of Portland cement paste. Cem. Concr. Res. 12, 603–610 (1982)

    Article  Google Scholar 

  • Gor, G.Yu., Neimark, A.V.: Adsorption-induced deformation of mesoporous solids. Langmuir 26(16), 13021–13027 (2010)

    Article  Google Scholar 

  • Grasley, Z.C., Leung, C.K.: Desiccation shrinkage of cementitious materials as an aging, poroviscoelastic response. Cem. Concr. Res. 41, 77–89 (2011)

    Article  Google Scholar 

  • Grzybowski, M., Shah, S.P.: Shrinkage cracking of fiber reinforced concrete. ACI Mater. J. 87(2), 138–147 (1990)

    Google Scholar 

  • Guglielmini, L., Gontcharov, A., Aldykiewicz Jr, A.J., Stone, H.A.: Drying of salt solutions in porous materials: intermediate-time dynamics and efflorescence. Phys. Fluids 20, 077101-1–077101-7 (2008)

  • Hajibabaee, A., Ley, M.T.: Impact of wet and sealed curing on curling in cement paste beams from drying shrinkage. ACI Mater. J. 112, 79–84 (2015)

    Google Scholar 

  • Hall, C., Hoff, W.D., Taylor, S.C., Wilson, M.A., Yoon, B.-G., Reinhardt, H.W., Sosoro, M., Meredith, P., Donald, A.M.: Water anomaly in capillary liquid absorption by cement-based materials. J. Mater. Sci. Lett. 14, 1178–1181 (1995)

    Article  Google Scholar 

  • Halperin, W.P., Jehng, J.-Y., Song, Y.-Q.: Application of spin-spin relaxation to measurement of surface area and pore size distributions in a hydrating cement paste. Magn. Res. Imaging 12, 169–173 (1994)

    Article  Google Scholar 

  • Hearn, N.: Comparison of water and propan-2-ol permeability in mortar specimens. Adv. Cem. Res. 8(30), 81–86 (1996)

    Article  Google Scholar 

  • Hertz, H.: Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume (About the evaporation of liquids, specially of mercury, in air-free space). Ann. Phys. Chem. 17(2), 177–200 (1882)

    Article  Google Scholar 

  • Hobbs, D.W.: Influence of aggregate restraint on the shrinkage of concrete. ACI J. 71–30, 445–450 (1974)

    Google Scholar 

  • Juenger, M.C.G., Jennings, H.: The use of nitrogen adsorption to assess the microstructure of cement paste. Cem. Concr. Res. 31, 883–892 (2001)

    Article  Google Scholar 

  • Knudsen, M.: Die maximale Verdampfungsgeschwindigkeit des Quecksilbers (Maximum evaporation rate of mercury). Annalen der Physik 47, 697–708 (1915)

    Article  Google Scholar 

  • Kosmatka, S.H., Kerkhoff, B., Panarese, W.C.: Design and Control of Concrete Mixtures, 14th edn. Portland Cement Association, Skokie (2002)

    Google Scholar 

  • le Sage de Fontenay, C., Sellevold, E.J.: Ice formation in hardened cement paste—I. Mature water-saturated pastes. In: Sereda, P.J., Litvan, G.G. (eds.) Durability of building materials and components, ASTM STP 691, (ASTM, 1980) pp. 425–438

  • Lura, P., Mejlhede Jensen, O., van Breugel, K.: Autogenous shrinkage in high-performance cement paste. Cem. Concr. Res. 33, 223–232 (2003)

    Article  Google Scholar 

  • Lura, P., Pease, B., Mazzotta, G., Rajabipour, F., Weiss, J.: Influence of shrinkage-reducing admixtures on the development of plastic shrinkage cracks. ACI Mater. J. 104(2), 187–194 (2007)

    Google Scholar 

  • Macey, H.H.: Clay-water relationships and the internal mechanism of drying. Trans. Brit. Ceram. Soc. 41(4), 73–121 (1942)

    Google Scholar 

  • Maruyama, I.: Origin of drying shrinkage of hardened cement paste: hydration pressure. J. Adv. Concr. Technol. 8(2), 187–200 (2010)

    Article  Google Scholar 

  • Maruyama, I., Sugie, A.: Numerical study on drying shrinkage of concrete affected by aggregate size. J. Adv. Concr. Technol. 12(August), 279–288 (2014)

    Article  Google Scholar 

  • McDonald, P.J., Rodin, V., Valori, A.: Characterisation of intra- and inter-C–S–H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content. Cem. Concr. Res. 40, 1656–1663 (2010)

    Article  Google Scholar 

  • Montgomery, R.B.: Viscosity and thermal conductivity of air and diffusivity of water vapor in air. J. Meteorol. 4, 193–196 (1947)

    Article  Google Scholar 

  • Mora-Ruacho, J., Gettu, R., Aguado, A.: Influence of shrinkage-reducing admixtures on the reduction of plastic shrinkage cracking in concrete. Cem. Concr. Res. 39, 141–146 (2009)

    Article  Google Scholar 

  • Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)

    Article  Google Scholar 

  • Nabavian, K., Bromley, L.A.: Condensation coefficient of water. Chem. Eng. Sci. 18, 651–660 (1963)

    Article  Google Scholar 

  • Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A.: Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores. J. Phys. Condens. Matter 15, 347–365 (2003)

    Article  Google Scholar 

  • Nestle, N., Galvosas, P., Kärger, J.: Liquid-phase self-diffusion in hydrating cement pastes—results from NMR studies and perspectives for further research. Cem. Concr. Res. 37, 398–413 (2007)

    Article  Google Scholar 

  • Olson, R.A., Neubauer, C.M., Jennings, H.M.: Damage to the pore structure of hardened Portland cement paste by mercury intrusion. J. Am. Ceram. Soc. 80(9), 2454–2458 (1997)

    Article  Google Scholar 

  • Parrott, L.J., Geiker, M., Gutteridge, W.A., Killoh, D.: Monitoring Portland cement hydration: comparison of methods. Cem. Concr. Res. 20, 919–926 (1990)

    Article  Google Scholar 

  • Passuello, A., Moriconi, G., Shah, S.P.: Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem. Concr. Compos. 31, 699–704 (2009)

    Article  Google Scholar 

  • Pel, L., Hazrati, K., Kopinga, K., Marchand, J.: Water absorption in mortar determined by NMR. Magn. Res. Imaging 16(5/6), 525–528 (1998)

    Article  Google Scholar 

  • Pickett, G.: Effect of aggregate on shrinkage of concrete and a hypothesis concerning shrinkage. J. Am. Concr. Inst. 27(5), 581–590 (1956)

    Google Scholar 

  • Powers, T.C., Copeland, L.E., Hayes, J.C., Mann, H.M.: Permeability of Portland cement paste. Bull. Portland Cem. Assoc. 53, 285–298 (1955)

    Google Scholar 

  • Scherer, G.W.: Drying gels: III. Warping plate. J. Non-Cryst. Solids 91(1987) 83–100; errata corrected in G.W. Scherer, Drying Gels: VIII. Revision and Review. J. Non-Cryst. Solids 109, 171–182 (1989)

  • Scherer, G.W.: Fundamentals of drying and shrinkage. In: Henkes, V.E., Onoda, G.Y., Carty, W.M. (eds.) Science of Whitewares, pp. 199–211. American Ceramic Society, Westerville (1996)

    Google Scholar 

  • Scherer, G.W.: Crystallization in pores. Cem. Concr. Res. 29(8), 1347–1358 (1999)

    Article  Google Scholar 

  • Scherer, G.W., Smith, D.M., Stein, D.: Deformation of aerogels during characterization. J. Non-Cryst. Solids 186, 309–315 (1995)

    Article  Google Scholar 

  • Scrivener, K.L.: The microstructure of concrete. In: Skalny, J. (ed.) Materials Science of Concrete. American Ceramic Society, Westerville (1989)

    Google Scholar 

  • Scrivener, K.: Straight talk with Karen Scrivener on cements, CO\(_2\) and sustainable development. Am. Ceram. Soc. Bull. 91(5), 47–50 (2012)

    Google Scholar 

  • Shah, S.P., Ouyang, C., Marinkunte, S., Yang, W., Becq-Giraudon, E.: A fracture mechanics model for shrinkage cracking of restrained concrete ring. ACI Mat. J. 95(4), 339–346 (1988)

  • Shahraeeni, E., Lehmann, P., Or, D.: Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: characteristics of evaporation from discrete pores. Water Res. Res. 48, W09525 (2012). doi:10.1029/2012WR011857

    Article  Google Scholar 

  • Shaw, T.M.: Drying as an immiscible displacement process with fluid counterflow. Phys. Rev. Lett. 59(15), 1671–1674 (1987)

    Article  Google Scholar 

  • Stull, R.: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol. 50, 2267–2269 (2011)

    Article  Google Scholar 

  • Sun, Z., Scherer, G.W.: Pore size and shape in mortar by thermoporometry. Cem. Concr. Res. 40, 740–751 (2010)

    Article  Google Scholar 

  • Suzuki, M., Maeda, S.: On the mechanism of drying of granular beds—mass transfer from discontinuous source. J. Chem. Eng. Jpn. 1(1), 26–31 (1968)

    Article  Google Scholar 

  • Taylor, H.F.W.: Cement Chemistry, 2nd edn. Thomas Telford, London (1997)

    Book  Google Scholar 

  • Thomas, J.J., Jennings, H.M., Allen, A.J.: The surface area of hardened cement paste as measured by various techniques. Concr. Sci. Eng. 1, 45–64 (1999)

    Google Scholar 

  • Tsimpanogiannis, N., Yortsos, Y.C.: Scaling theory of drying in porous media. Phys. Rev. E 59(4), 4353–4365 (1999)

    Article  Google Scholar 

  • USGS: Mineral Commodity Summaries (2014). http://minerals.usgs.gov/minerals/pubs/mcs/index.html

  • van Genuchten, M.Th.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

  • Viallis, H., Faucon, P., Petit, J.C., Nonat, A.: Interaction between salts (NaCl, CsCl) and calcium silicate hydrates (C–S–H). J. Phys. Chem. B 103, 5212–5219 (1999)

    Article  Google Scholar 

  • Vichit-Vadakan, W., Scherer, G.W.: Measuring permeability of rigid materials by a beam-bending method: III. Cement paste. J. Am. Ceram. Soc. 85(6):1537–44 (2002); Erratum, J. Am. Ceram. Soc. 87 [8] (2004) 1615

  • Vichit-Vadakan, W., Scherer, G.W.: Measuring permeability and stress relaxation of young cement paste by beam-bending. Cem. Concr. Res. 33, 1925–1932 (2003)

    Article  Google Scholar 

  • Villadsen, J.: Pore structure in cement based materials, Technical Report 277, Building Materials Laboratory, Technical University of Denmark, ISSN 0908–3871 (1992)

  • Villani, C., Spragg, R., Pour-Ghaz, M., Weiss, W.J.: The influence of pore solutions properties on drying in cementitious materials. J. Am. Ceram. Soc. 97(2), 386–393 (2014)

    Article  Google Scholar 

  • Weiss, W.J., Yang, W., Shah, S.P.: Influence of specimen size/geometry on shrinkage cracking of rings. J. Eng. Mech. 126(1), 93–101 (2000)

    Article  Google Scholar 

  • Wong, H.S., Buenfeld, N.R.: Euclidean distance mapping for computing microstructural gradients at interfaces in composite materials. Cem. Concr. Res. 36, 1091–1097 (2006)

    Article  Google Scholar 

  • Wu, Z., Wong, H.S., Buenfeld, N.R.: Influence of drying-induced microcracking and related size effects on mass transport properties of concrete. Cem. Concr. Res. 68, 35–48 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Scherer.

Appendix

Appendix

To estimate the concentration of water in the vapor adjacent to the surface of the liquid, we consider a steady state in which there is a boundary layer with thickness \(\delta _\mathrm{V}\), at the outer edge of which (\(z = \delta _\mathrm{V}\)) the vapor concentration is set at the ambient value, \(c(\delta _\mathrm{V})=c_\mathrm{amb}\), and at the inner edge of which (\(z = 0\)) there is an evaporative flux, \(J_\mathrm{E}\), fixed at

$$\begin{aligned} -D_\mathrm{v} \left. {\frac{\text {d}c}{\text {d}z}} \right| _{z=0} = J_\mathrm{E} \end{aligned}$$
(22)

where \(D_\mathrm{v}\) is the diffusivity of the vapor. Solving \(D_\mathrm{v} \text {d}^{2}c/\text {d}z^{2} = 0\), the concentration profile in the boundary layer is found to be

$$\begin{aligned} c[z]= c_\mathrm{amb} + \frac{J_\mathrm{E} }{D_\mathrm{v} }\left( {\delta _\mathrm{V} -z} \right) \end{aligned}$$
(23)

If the rate of evaporation from the surface of the liquid is related to the vapor concentration by

$$\begin{aligned} J_\mathrm{E} =k_\mathrm{E} \left( {c_\mathrm{s} -c[0]} \right) \end{aligned}$$
(24)

where \(c_\mathrm{s}\) is the vapor concentration at saturation, then Eq. (23) requires that the concentration in the vapor phase adjacent to the liquid surface is

$$\begin{aligned} c\left[ 0 \right] = \frac{c_\mathrm{s} +c_\mathrm{amb} \left( {{D_\mathrm{v} }/{k_\mathrm{E} \delta _\mathrm{V} }} \right) }{1+{D_\mathrm{v} }/{k_\mathrm{E} \delta _\mathrm{V} }} \end{aligned}$$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherer, G.W. Drying, Shrinkage, and Cracking of Cementitious Materials. Transp Porous Med 110, 311–331 (2015). https://doi.org/10.1007/s11242-015-0518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0518-5

Keywords

Navigation