Skip to main content
Log in

Linear and Nonlinear Analyses of the Onset of Buoyancy-Induced Instability in an Unbounded Porous Medium Saturated by Miscible Fluids

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This study analyzes the stability of an initially sharp interface between two miscible fluids in a porous medium. Linear stability equations are first derived using the similarity variable of the basic state, and then transformed into a system of ordinary differential equations using a spectral expansion with and without quasi-steady-state approximation (QSSA). These transformed equations are solved using the eigenanalysis and initial value problem approach. The initial growth rate analysis shows that initially the system is unconditionally stable. The stability characteristics obtained under the present QSSA are quantitatively same as those obtained without the QSSA. To support these theoretical results, numerical simulations are conducted using the Fourier-spectral method. The results of theoretical linear stability analyses and the numerical simulations validate to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(a\) :

Dimensionless wavenumber, \(\sqrt{a_x^2 +a_y^2 }\)

\(a^{*}\) :

Modified dimensionless wave number, \(a\sqrt{\tau }\)

\(C\) :

Concentration (M)

\(c\) :

Dimensionless concentration, \({\left( {C-C_+ } \right) }/{\left( {C_{-} -C_+ } \right) }\)

\(\mathcal{D}\) :

Effective diffusion coefficient \(\left( {{\hbox {m}^{2}}/\hbox {s}} \right) \)

g :

Gravitational acceleration vector \(\left( {\hbox {m}/{\hbox {s}^{2}}} \right) \)

\(K\) :

Permeability \(\left( {\hbox {m}^{2}} \right) \)

\(\mathcal{L}\) :

Diffusional operator in \(\left( {\tau ,\zeta } \right) \)-domain, \({\partial ^{2}}/{\partial \zeta ^{2}}+\left( {\zeta /2} \right) \left( {\partial /{\partial \zeta }} \right) \)

\(P\) :

Pressure \(\left( {\hbox {Pa}} \right) \)

\(t\) :

Time \(\left( \hbox {s} \right) \)

U :

Velocity vector \(\left( {\hbox {m}/\hbox {s}} \right) \)

\(w\) :

Dimensionless vertical velocity component

\(\left( {x,y,z} \right) \) :

Dimensionless Cartesian coordinates

\(\mu \) :

Viscosity \(\left( {\hbox {Pa}\, \hbox {s}} \right) \)

\(\rho \) :

Density \(\left( {{\hbox {kg}}/{\hbox {m}^{3}}} \right) \)

\(\sigma \) :

Dimensionless growth rate

\(\tau \) :

Dimensionless time \(\left( {{\mathcal{D}t}/K} \right) \)

\(\zeta \) :

similarity Variable \(\left( {z/{\sqrt{\tau }}} \right) \)

c:

Critical state

0:

Basic quantity

1:

Perturbed quantity

References

  • Ben, Y., Demekhin, E.A., Chang, H.-C.: A spectral theory for small-amplitude miscible fingering. Phys. Fluids 14, 999–1010 (2002)

    Article  Google Scholar 

  • Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Publications Inc., Mineola (2000)

    Google Scholar 

  • Caltagirone, J.-P.: Stability of a saturated porous layer subject to a sudden rise in surface temperature: comparison between the linear and energy methods. Q. J. Mech. Appl. Math. 33, 47–58 (1980)

    Article  Google Scholar 

  • Daniel, D., Tilton, N., Riaz, A.: Optimal perturbations of gravitationally unstable, transient boundary layers in porous media. J. Fluid Mech. 727, 456–487 (2013)

    Article  Google Scholar 

  • Ennis-King, J., Preston, I., Paterson, L.: Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17, 084107 (2005)

    Article  Google Scholar 

  • Farrel, B.F., Ioannou, P.J.: Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci. 53, 2041–2053 (1996)

    Article  Google Scholar 

  • Fernandez, J., Kurowski, P., Petitjeans, P., Meiburg, E.: Density-driven unstable flows of miscible fluids in a Hele–Shaw cell. J. Fluid Mech. 451, 239–260 (2002)

    Article  Google Scholar 

  • Hassanzadeh, H., Pooladi-Darvish, M., Keith, D.W.: Stability of a fluid in a horizontal saturated porous layer: effect of non-linear concentration profile, initial, and boundary conditions. Transp. Porous Med. 65, 193–211 (2006)

  • Hidalgo, J., Carrera, J.: Effect of dispersion on the onset of convection during \(\text{ CO }_{2}\) sequestration. J. Fluid Mech. 640, 441–452 (2009)

    Article  Google Scholar 

  • Horton, C.W., Rogers, F.T.: Convection currents in porous medium. J. Appl. Phys. 16, 367–370 (1945)

    Article  Google Scholar 

  • Kim, M.C.: Onset of radial viscous fingering in a Hele–Shaw cell. Korean J. Chem. Eng. 29, 1688–1694 (2012)

    Article  Google Scholar 

  • Kim, M.C.: Onset of buoyancy-driven convection in a fluid-saturated porous medium bounded by a long cylinder. Transp Porous Med. 97, 395–408 (2013)

    Article  Google Scholar 

  • Kim, M.C., Choi, C.K.: The stability of miscible displacement in porous media: nonmonotonic viscosity profiles. Phys. Fluids 23, 084105 (2011)

    Article  Google Scholar 

  • Kim, M.C., Choi, C.K.: Linear stability analysis on the onset of the buoyancy-driven convection in liquid saturated porous medium. Phys. Fluids 24, 044102 (2012)

    Article  Google Scholar 

  • Kneafsey, T.K., Pruess, K.: Laboratory experiments and numerical simulation studies of convectively enhanced carbon dioxide dissolution. Energy Procedia 4, 5114–5121 (2011)

    Article  Google Scholar 

  • Lapwood, E.R.: Convection of a fluid in a porous medium. Proc. Camb. Philos. Soc. 44, 508–521 (1948)

    Article  Google Scholar 

  • Manickam, O., Homsy, G.M.: Fingering instabilities in vertical miscible displacement flows in porous media. J. Fluid Mech. 288, 75–102 (1995)

    Article  Google Scholar 

  • Morton, B.R.: On the equilibrium of a stratified layer of fluid. J. Mech. Appl. Math. 10, 433–447 (1957)

    Article  Google Scholar 

  • Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., Huppert, H.E.: Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, L22404 (2010)

    Article  Google Scholar 

  • Pramanik, S., Mishra, M.: Linear stability analysis of Korteweg stresses effect on miscible viscous fingering in porous media. Phys. Fluid 25, 074104 (2013)

    Article  Google Scholar 

  • Pritchard, D.: The linear stability of double-diffusive miscible rectilinear displacements in Hele–Shaw cell. Eur. J. Mech. B 28, 564–577 (2009)

    Article  Google Scholar 

  • Rapaka, S., Chen, S., Pawar, R., Stauffer, P.H., Zhang, D.: Non-modal growth of perturbations in density-driven convection in porous media. J. Fluid Mech. 609, 285–303 (2008)

    Article  Google Scholar 

  • Riaz, A., Hesse, M., Tchelepi, H.A., Orr Jr, F.M.: Onset of convection in a gravitationally unstable, diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111 (2006)

    Article  Google Scholar 

  • Rees, D.A.S., Selim, A., Ennis-King, J.P.: The instability of unsteady boundary layers in porous media. In: Vadász, P. (ed.) Emerging Topics in Heat and Mass Transfer in porous media, pp. 85–110. Springer, Berlin (2008a)

    Chapter  Google Scholar 

  • Rees, D.A.S., Postelnicu, A., Bassom, A.P.: The linear vortex instability of the near vertical line source plume in porous media. Transp. Porous Med. 74, 211–238 (2008b)

    Google Scholar 

  • Selim, A., Rees, D.A.S.: The stability of a developing thermal front in a porous medium. I Linear theory. J. Porous Media 10, 1–15 (2007)

    Article  Google Scholar 

  • Selim, A., Rees, D.A.S.: Linear and nonlinear evolution of isolated disturbances in a growing thermal boundary layer in porous media. AIP Conf. Proc. 1254, 47–52 (2010)

    Article  Google Scholar 

  • Tan, C.T., Homsy, G.M.: Stability of miscible displacements in porous media: rectilinear flow. Phys. Fluids 29, 3549–3556 (1986)

    Article  Google Scholar 

  • Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London. A 201, 192–196 (1950)

    Article  Google Scholar 

  • Trevelyan, P.M.J., Alamarcha, C., de Wit, A.: Buoyancy-driven instabilities of miscible two-layer stratifications in porous media and Hele–Shaw cells. J. Fluid Mech. 670, 38–65 (2011)

    Article  Google Scholar 

  • Wessel-Berg, D.: On a linear stability problem related to underground \({CO}_{2}\) storage. SIAM J. Appl. Math. 70, 1219–1238 (2009)

    Article  Google Scholar 

  • Wooding, R.A.: Rayleigh instability of a thermal boundary layer in flow through a porous medium. J. Fluid Mech. 9, 183–192 (1960)

    Article  Google Scholar 

  • Wooding, R.A.: The stability of an interface between miscible fluids in a porous medium. ZAMP 13, 255–266 (1962)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2038983). The authors are grateful to all the reviewers for their lucid comments which have served to greatly improve the status of the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chan Kim.

Appendices

Appendix 1

The complementary solution of Eq. (3.16) is

$$\begin{aligned} w_1&= \frac{a^{*}}{2}\left[ -\exp \left( {a^{*}\zeta } \right) \mathop \int \limits _{-\infty }^\zeta {\exp \left( {-a^{*}\xi } \right) \sum _{n=0}^\infty {A_n \left( \tau \right) \phi _n \left( \xi \right) } \mathrm{d}\xi }+\exp \left( {-a^{*}\zeta } \right) \right. \nonumber \\&\left. \mathop \int \limits _{-\infty }^\zeta {\exp \left( {a^{*}\xi } \right) \sum _{n=0}^\infty {A_n \left( \tau \right) \phi _n \left( \xi \right) } \mathrm{d}\xi } \right] +B_1 \exp \left( {a^{*}\zeta } \right) +B_2 \exp \left( {-a^{*}\zeta } \right) .\qquad \end{aligned}$$
(7.1)

Using the properties of definite integral, we have

$$\begin{aligned} \mathop \int \limits _{-\infty }^\zeta {f\left( \xi \right) \mathrm{d}\xi } =\mathop \int \limits _{-\infty }^\infty {f\left( \xi \right) \mathrm{d}\xi +} \int \limits _\infty ^\zeta {f\left( \xi \right) \mathrm{d}\xi } =\mathop \int \limits _{-\infty }^\infty {f\left( \xi \right) \mathrm{d}\xi -} \mathop \int \limits _\zeta ^\infty {f\left( \xi \right) \mathrm{d}\xi } , \end{aligned}$$
(7.2)

where \(f\left( \xi \right) =\exp \left( {-a^{*}\xi } \right) \sum _{n=0}^\infty {A_n \left( \tau \right) \phi _n \left( \xi \right) } \). On combining Eqs. (7.1) and (7.2), we can write the complete solution of Eq. (3.16) as

$$\begin{aligned} w_1&= \frac{a^{*}}{2}\left[ \exp \left( {a^{*}\zeta } \right) \mathop \int \limits _\zeta ^\infty {\exp \left( {-a^{*}\xi } \right) \sum _{n=0}^\infty {A_n \left( \tau \right) \phi _n \left( \xi \right) } \mathrm{d}\xi }+\exp \left( {-a^{*}\zeta } \right) \right. \nonumber \\&\left. \mathop \int \limits _{-\infty }^\zeta {\exp \left( {a^{*}\xi } \right) \sum _{n=0}^\infty {A_n \left( \tau \right) \phi _n \left( \xi \right) } \mathrm{d}\xi } \right] -\frac{a^{*}}{2}\exp \left( {a^{*}\zeta } \right) \mathop \int \limits _{-\infty }^\infty \exp \left( {-a^{*}\xi } \right) \nonumber \\&\sum _{n=0}^\infty {A_n \left( \tau \right) \phi _n \left( \xi \right) } \mathrm{d}\xi +B_1 \exp \left( {a^{*}\zeta } \right) +B_2 \exp \left( {-a^{*}\zeta } \right) . \end{aligned}$$
(7.3)

On using the first boundary condition, \(w_1 \rightarrow 0\) as \(\zeta \rightarrow \infty \), into Eq. (7.3) we have

$$\begin{aligned} B_1 =\frac{a^{*}}{2}\left[ {\mathop \int \limits _{-\infty }^\infty {\exp \left( {-a^{*}\xi } \right) \sum _{n=0}^\infty {A_n \left( \tau \right) \phi _n \left( \xi \right) } \mathrm{d}\xi } } \right] , \end{aligned}$$
(7.4)

and the second boundary condition,\( w_1 \rightarrow 0\) as \(\zeta \rightarrow \hbox { }-\infty \), gives

$$\begin{aligned} B_2 =0. \end{aligned}$$
(7.5)

In writing Eqs. (7.4) and (7.5), we have used the following results:

$$\begin{aligned} \mathop {\hbox {lim}}\limits _{\zeta \rightarrow \infty } \exp \left( {-a^{*}\zeta } \right) =0,\quad \mathop {\hbox {lim}}\limits _{\zeta \rightarrow -\infty } \exp \left( {a^{*}\zeta } \right) =0 \; \hbox {and}\; \mathop \int \limits _\zeta ^\zeta {f\left( \xi \right) \mathrm{d}\xi } =0, \end{aligned}$$
(7.6)

where \(a^{*}\) has a finite value. On putting the values of \(B_1\) and \(B_2\) in Eq. (7.3), the solution for \(w_1\) is Eq. (3.17).

Appendix 2

By discretizing Eqs. (3.32), (3.33), and (3.35a) using central difference formulations, we obtained the following relation:

$$\begin{aligned} \mathbf{Gw}=\mathbf{0}, \end{aligned}$$
(8.1)

where

$$\begin{aligned}&\displaystyle G_{1,1} = C_1 , \quad G_{1,2} =B_1 +D_1 , \quad G_{1,3} =A_1 +E_1,\end{aligned}$$
(8.2)
$$\begin{aligned}&\displaystyle G_{2,1} =B_2 , \quad G_{2,2} =A_2 +C_2 , \quad G_{2,3} =D_2 , \quad G_{2,4} =E_2 ,\end{aligned}$$
(8.3)
$$\begin{aligned}&\displaystyle G_{i,i-2} =A_i , \quad G_{i,i-1} =B_i , \quad G_{i,i} =C_i , \quad G_{i,i+1} =D_i,\nonumber \\&\displaystyle G_{i,i+2} =E_i ,\; \hbox {for} \; i=3,\ldots ,n-2,\end{aligned}$$
(8.4)
$$\begin{aligned}&\displaystyle G_{n-1,n-3} =A_{n-1} , \quad G_{n-1,n-2} =B_{n-2} , \quad G_{n-1,n-1} =C_{n-1} , \quad G_{n-1,n} =D_{n-1} ,\qquad \quad \end{aligned}$$
(8.5)
$$\begin{aligned}&\displaystyle G_{n,n\!-\!2} =A_n , \quad G_{n,n\!-\!1} \!=\!B_n , \quad G_{n,n} \!=\!C_n \!-\!E_n,\qquad \end{aligned}$$
(8.6)
$$\begin{aligned}&\displaystyle \mathbf{w}=\left[ {w_1 ,w_2 ,\ldots w_{n-1} ,w_n } \right] ^{T},\end{aligned}$$
(8.7)
$$\begin{aligned}&\displaystyle A_i =\left\{ {1-\frac{\zeta _i }{4}h} \right\} ,\end{aligned}$$
(8.8)
$$\begin{aligned}&\displaystyle B_i =\left\{ {-4+\frac{\zeta _i }{2}h^{2}-\left( {2a^{*2}+\sigma ^{*}\tau } \right) h^{2}+a^{*2}\frac{\zeta _i }{4}h^{3}} \right\} ,\end{aligned}$$
(8.9)
$$\begin{aligned}&\displaystyle C_i \left\{ 6+2\left( {2a^{*2}+\sigma ^{*}\tau } \right) h^{2}+a^{*4}h^{4}+a^{*2}\sigma ^{*}\tau h^{4}\right. \nonumber \\&\displaystyle \left. -a^{*2} Ra^{*}h^{4}\frac{1}{2\sqrt{\pi }}\exp \left( {-\frac{\zeta _i^2 }{4}} \right) \right\} ,\end{aligned}$$
(8.10)
$$\begin{aligned}&\displaystyle D_i =\left\{ {-4-\frac{\zeta _i }{2}h-\left( {2a^{*2}+\sigma ^{*}\tau } \right) h^{2}-a^{*2}\frac{\zeta _i }{4}h^{3}} \right\} ,\end{aligned}$$
(8.11)
$$\begin{aligned}&\displaystyle E_i =\left\{ {1+\frac{\zeta _i }{4}h} \right\} . \end{aligned}$$
(8.12)

Here, \(w_i\) is the vertical velocity disturbance at \(\zeta =\zeta _i\) and \(h\left( {=\zeta _{i+1} -\zeta _i } \right) \) is the fixed step size. We obtained neutral stability condition for a given \(a^{*}\) by finding \(Ra^{*}\) that makes the \(\det \left( \mathbf{G} \right) =0\) under \(\sigma ^{*}=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.C., Yadav, D. Linear and Nonlinear Analyses of the Onset of Buoyancy-Induced Instability in an Unbounded Porous Medium Saturated by Miscible Fluids. Transp Porous Med 104, 407–433 (2014). https://doi.org/10.1007/s11242-014-0341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0341-4

Keywords

Navigation