Skip to main content
Log in

Application of PFG–NMR to Study the Impact of Colloidal Deposition on Hydrodynamic Dispersion in a Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Colloidal particulate deposition affects the performance of industrial equipment, reverse osmosis membranes and sub-surface contaminant transport. Nuclear magnetic resonance (NMR) techniques, i.e. diffusion, diffraction and velocity imaging, are used to study the effect deposited colloidal particulate have on the fluid dynamics of water inside a model porous medium. Specially prepared oil-filled hard-sphere particles allow monitoring of particulate accumulation via NMR spectroscopy. Evidence of preferential spatial deposition is observed after the initial colloidal particulate deposition. Loss of spatial homogeneity is observed through NMR diffraction, while observations of the probability distributions of displacement (propagators) indicate the formation of back-bone type flow. This paper presents unique dynamic NMR data for the non-invasive non-destructive investigation of fluid transport in opaque porous media experiencing colloidal deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

    Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006)

    Article  Google Scholar 

  • Berkowitz, B., Ewing, R.P.: Percolation theory and network modeling applications in soil physics. Surv. Geophys. 19, 23–72 (1998)

    Article  Google Scholar 

  • Bijeljic, B., Blunt, M.J.: Pore-scale modeling of transverse dispersion in porous media. Water Resour. Res. 43(12), 1–8 (2007)

    Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Insights into non-Fickian solute transport in carbonates. Water Resour. Res. 49, 2714 (2013a)

  • Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J.: Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013011 (2013b)

  • Brosten, T.R., Fridjonsson, E.O., Codd, S.L., Seymour, J.D.: NMR measurement of the transport dynamics of colloidal particles in an open cell polymer foam porous media. J. Colloid Interface Sci. 349, 384–391 (2010)

    Article  Google Scholar 

  • Brown, J.R., Fridjonsson, E.O., Seymour, J.D., Codd, S.L.: Nuclear magnetic resonance measurement of shear-induced particle migration in Brownian suspensions. Phys. Fluids 21(9), 093301 (2009)

    Article  Google Scholar 

  • Brown, J.R., Seymour, J.D., Codd, S.L., Fridjonsson, E.O., Cokelet, G.R., Nyden, M.: Dynamics of the solid and liquid phases in dilute sheared Brownian suspensions: irreversibility and particle migration. Phys. Rev. Lett. 99(24), 240602 (2007)

    Article  Google Scholar 

  • Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendon, Oxford (1991)

    Google Scholar 

  • Callaghan, P.T.: Translational dynamics and magnetic resonance principles of pulsed gradient spin echo NMR. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  • Callaghan, P.T., Codd, S.L., Seymour, J.D.: Spatial coherence phenomena arising from translational spin motion in gradient spin echo experiments. Concepts Magn. Reson. 11, 181–202 (1999)

    Article  Google Scholar 

  • Callaghan, P.T., Coy, A., Macgowan, D., Packer, P.J., Zelaya, F.O.: Diffraction-like effects in NMR diffusion studies of fluids in porous soilds. Nature 351, 467–469 (1991)

    Article  Google Scholar 

  • Codd, S.L., Seymour, J.D.: Nuclear magnetic resonance measurement of hydrodynamic dispersion in porous media: preasymptotic dynamics, structure and nonequilibrium statistical mechanics. Eur. Phys. J. Appl. Phys. 60, 24204 (2012)

    Article  Google Scholar 

  • Creber, S.A., Pintelon, T.R.R., Johns, M.L.: Quantification of the velocity acceleration factor for colloidal transport in porous media using NMR. J. Colloid Interface Sci. 339, 168–174 (2009)

    Article  Google Scholar 

  • Evertz, L.Q., Rassi, E.M., Kennedy, J.R.M., Codd, S.L., Seymour, J.D.: Oscillatory flow phenomena in simple and complex fluids. Appl. Magn. Reson. 42(2), 211–225 (2012)

    Article  Google Scholar 

  • Fridjonsson, E.O., Seymour, J.D., Cokelet, G.R., Codd, S.L.: Dynamic NMR microscopy measurement of the dynamics and flow partitioning of colloidal particles in a bifurcation. Exp. Fluids 50(5), 1335–1347 (2011)

    Article  Google Scholar 

  • Gladden, L.F., Mitchell, J.: Measuring adsorption, diffusion and flow in chemical engineering: applications of magnetic resonance to porous media. New J. Phys. 13, 035001 (2011)

    Article  Google Scholar 

  • Grebenkov, D.S.: NMR survey of reflected Brownian motion. Rev. Mod. Phys. 79, 1077–1137 (2007)

    Article  Google Scholar 

  • Henry, C., Minier, J.-P., Lefevre, G.: Towards a description of particulate fouling: from single particle deposition to clogging. Adv. Colloid Interface Sci. 185–186, 34–76 (2012)

    Article  Google Scholar 

  • Johnson, P.R., Elimelech, M.: Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir 11(3), 801–812 (1995)

    Article  Google Scholar 

  • Johnson, P.R., Sun, N., Elimelech, M.: Colloid transport in geochemically heterogeneous porous media: modeling and measurements. Environ. Sci. Technol. 30, 3284–3293 (1996)

    Article  Google Scholar 

  • Johnson, W.P., Li, X., Yal, G.: Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation. Environ. Sci. Technol. 41(4), 1279–1287 (2007)

    Article  Google Scholar 

  • Johnson, W.P., Ma, H., Pazmino, E.: Straining credibility: a general comment regarding common arguments used to infer straining as the mechanism of colloid retention in porous media. Environ. Sci. Technol. 45(9), 3831–3832 (2011)

    Article  Google Scholar 

  • Johnson, W.P., Pazmino, E., Ma, H.: Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations. Water Res. 44, 1158–1169 (2010)

    Article  Google Scholar 

  • Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., Thompson, J.L.: Migration of plutonium in ground water at the Nevada Test Site. Nature 397, 56–59 (1999)

    Article  Google Scholar 

  • Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–193 (1999)

    Article  Google Scholar 

  • Latour, L.L., Mitra, P.P., Kleinberg, R.L., Sotak, C.H.: Time-dependent diffusion coefficient of fluids in porous media as a probe of surface-to-volume ration. J. Magn. Reson. A 101, 342–346 (1993)

    Article  Google Scholar 

  • Levy, M., Berkowitz, B.: Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64, 203–226 (2003)

    Article  Google Scholar 

  • Loxley, A., Vincent, B.: Preparation of poly(methylmethacrylate) microcapsules with liquid cores. J. Colloid Interface Sci. 208(1), 49–62 (1998)

    Article  Google Scholar 

  • Maier, R.S., Kroll, D.M., Bernard, R.S., Howington, S.E., Peters, J.F., Davis, H.T.: Pore-scale simulation of dispersion. Phys. Fluids 12(8), 2065–2079 (2000)

    Article  Google Scholar 

  • Maroudas, A., Eisenklam, P.: Clarification of suspensions: a study of particle deposition in granular media: part I: some observations on particle deposition. Chem. Eng. Sci. 20(10), 867–873 (1965)

    Article  Google Scholar 

  • Prat, M.: Recent advances in pore-scales models for drying of porous media. Chem. Eng. J. 86, 153–164 (2002)

    Article  Google Scholar 

  • Rieger, M., Schaumann, G.E., Mouvenchery, Y.K., Niessner, R., Seidel, M., Baumann, T.: Development of antibody-labelled superparamagnetic nanoparticles for the visualisation of benzo[\(a\)] pyrene in porous media with magnetic resonance imaging. Anal. Bioanal. Chem. 403(9), 2529–2540 (2012)

    Article  Google Scholar 

  • Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloid Surf. A 107, 1–56 (1996)

    Article  Google Scholar 

  • Saffman, P.G.: A theory of dispersion in a porous medium. J. Fluid Mech. 6, 321–349 (1959)

    Article  Google Scholar 

  • Sahimi, M.: Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393–1534 (1993)

    Article  Google Scholar 

  • Salles, J., Thovert, J.-F., Delannay, R., Prevors, L., Auriault, J.-L., Adler, P.M.: Taylor dispersion in porous media. Determination of the dispersion tensor. Phys. Fluids A 5, 2348–2376 (1993)

    Article  Google Scholar 

  • Scheidegger, A.E.: An evaluation of the accuracy of the diffusivity equation for describing miscible displacement in porous media. In: Proceedings of Theory of Fluid Flow in Porous Media Conference. pp. 101–116. University of Oklahoma, Norman (1959)

  • Scheven, U.M., Harris, R., Johns, M.L.: Intrinsic dispersivity of randomly packed monodisperse spheres. Phys. Rev. Lett. 99, 054502 (2007)

    Article  Google Scholar 

  • Schwarz, T.: Heat transfer and fouling behavior of siemens PWR steam generators: long-term operating experience. Exp. Therm. Fluid Sci. 25, 319–327 (2001)

    Article  Google Scholar 

  • Sen, P.N., Schwartz, L.M., Mitra, P.P.: Probing the structure of porous media using NMR spin echoes. Magn. Reson. Imaging 12, 227–230 (1994)

    Article  Google Scholar 

  • Seymour, J.D., Callaghan, P.T.: “Flow-diffraction” structural characterization and measurement of hydrodynamic dispersion in porous media by PGSE NMR. J. Magn. Reson. A 122(1), 90–93 (1996)

    Article  Google Scholar 

  • Seymour, J.D., Callaghan, P.T.: Generalized approach to NMR analysis of flow and dispersion in porous media. AICHE J. 43, 2096–2111 (1997)

    Article  Google Scholar 

  • Seymour, J.D., Gage, J.P., Codd, S.L., Gerlach, R.: Anomalous fluid transport in porous media Induced by biofilm growth. Phys. Rev. Lett. 93, 198103 (2004)

    Article  Google Scholar 

  • Song, L., Elimelech, M.: Dynamics of colloid deposition in porous media: modeling the role of retained particles. Colloid Surf. A 73, 49–63 (1993)

    Article  Google Scholar 

  • Song, Y.Q., Cho, H., Hopper, T., Pomerantz, A.E., Sun, P.Z.: Magnetic resonance in porous media: recent progress. J. Chem. Phys. 128, 052212 (2008)

    Article  Google Scholar 

  • Taylor, G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186–203 (1953)

    Article  Google Scholar 

  • Tien, C., Payatakes, A.C.: Advances in deep bed filtration. AICHE J. 25(5), 737–759 (1979)

    Article  Google Scholar 

  • Wassenius, H., Callaghan, P.T.: Nanoscale NMR velocimetry by means of slowly diffusing tracer particles. J. Magn. Reson. 169(2), 250–256 (2004)

    Article  Google Scholar 

  • Wassenius, H., Callaghan, P.T.: NMR velocimetry studies of the steady-shear rheology of a concentrated hard-sphere colloidal system. Eur. Phys. J. E 18(1), 69–84 (2005)

    Article  Google Scholar 

  • Wassenius, H., Nyden, M., Vincent, B.: NMR diffusion studies of translational properties of oil inside core–shell latex particles. J. Colloid Interface Sci. 264(2), 538–547 (2003)

    Article  Google Scholar 

  • Werth, C.J., Zhang, C.Y., Brusseau, M.L., Oostrom, M., Baumann, T.: A review of non-invasive imaging methods and applications in contaminant hydrogeology research. J. Contam. Hydrol. 113, 1–24 (2010)

    Article  Google Scholar 

  • Yiantsios, S., Sioutopoulos, D., Karabelas, A.: Colloidal fouling of reverse osmosis membranes: an overview of key issues and efforts to develop improved prediction techniques. Desalination 183, 257–272 (2005)

    Article  Google Scholar 

  • Zamani, A., Maini, B.: Flow of dispersed particles through porous media: deep bed filtration. J. Pet. Sci. Eng. 69(1), 71–88 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

JDS acknowledges funding from NSF CTS-0348076 and SLC funding from NSF CBET-0642328. JDS and SLC thank the M.J. Murdoch Charitable Trust and NSF MRI program for equipment funding. EOF acknowledges funding from UWA ECR-RCA

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar O. Fridjonsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fridjonsson, E.O., Codd, S.L. & Seymour, J.D. Application of PFG–NMR to Study the Impact of Colloidal Deposition on Hydrodynamic Dispersion in a Porous Medium. Transp Porous Med 103, 117–130 (2014). https://doi.org/10.1007/s11242-014-0290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0290-y

Keywords

Navigation