Skip to main content
Log in

Transport and Adsorption of Nano-Colloids in Porous Media Observed by Magnetic Resonance Imaging

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We use magnetic resonance imaging to follow the adsorption of colloids during their transport through a porous medium (grain packing). We injected successive pulses of a suspension of nanoparticles able to adsorb onto the grains. To get quantitative information we carry out 2D imaging and 1D measurements of the evolution in time of the distribution profile of all particles (suspended or adsorbed) in cross-sectional layers along the sample axis during the flow. For the first injections we observe the 1D profile amplitude progressively damping as particles advance through the sample, due to their adsorption. 2D imaging shows that successive injections finally result in a coverage of grains by adsorbed particles regularly progressing along the sample. The analysis of the results makes it possible to get a clear description of the adsorption process. In our specific case (particle charged oppositely to the adsorption sites) it appears that the particles rapidly explore the pores and adsorb as soon as they encounter available sites on grains, and the surplus of particles goes on advancing in the sample. A further analysis of the profiles makes it possible to distinguish the respective concentration distribution of suspended and adsorbed particles over time at each step of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Surface area of the pores

C :

Concentration of suspended particles \((\hbox {mol\,l}^{-1})\)

d :

Typical pore diameter

\(d_{\hbox {grain}}\) :

Diameter of sand grains

\(D_m\) :

Diffusion coefficient of particles

D :

Dispersion coefficient

\(D_w\) :

Self-diffusion coefficient of water

\(\varepsilon \) :

Porosity

\(k_B\) :

Boltzmann constant \((1.38\times 10^{-23}\hbox {m}^{{2}}\hbox {\,kg\,s}^{-{2}}\hbox {\,K}^{-{1}})\)

\(l_{\hbox {ads}}\) :

Typical distance for particles to get adsorbed

Q :

Darcy flux \((\hbox {m\,s}^{-1})\)

\(\mu \) :

Fluid viscosity

R :

Particle relaxivity \((\hbox {mol}^{-1}\,\hbox {l\,s}^{-1})\)

r :

Particle radius

\(\rho \) :

Surface relaxivity \((\hbox {m\,s}^{-1})\)

\(\rho _0\) :

Surface relaxivity with no adsorbed particles \((\hbox {m\,s}^{-1})\)

Re:

Reynolds number

\(\rho _{w}\) :

Water density

\(R_{\hbox {ads}}\) :

Pseudo-relaxivity constant of sand surface saturated with adsorbed particles \((\hbox {mol}^{-1}\,\hbox {g\,s}^{-1})\)

s :

Concentration of adsorbed particles \((\hbox {mol\,g}^{-1})\)

S :

NMR signal

\(S_0\) :

NMR signal amplitude

\(S_\mathrm{res}\) :

MRI signal without particles

\(\tau \) :

Detection time

\(\hbox {T}_{E }\) :

Echo time

\(T_1\) :

Longitudinal relaxation time

\(T_2\) :

Transverse relaxation time

\(T_{\hbox {2,bulk}}\) :

Transverse relaxation time in particle-free bulk water

T :

Temperature

\(T_D\) :

Time required for 95% particles adsorption

V :

Volume area of the pores

v :

Mean velocity through the pores

References

  • Adamczyk, Z.: Kinetics of diffusion-controlled adsorption of colloid particles and proteins. J. Colloid Interface Sci. 229(2), 477–489 (2000)

    Article  Google Scholar 

  • Baumann, T., Werth, C.J.: Visualization of colloid transport through heterogeneous porous media using magnetic resonance imaging. Colloids Surf. A 265, 2–10 (2005)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)

    Google Scholar 

  • Bradford, S.A., Torkzaban, S., Walker, S.L.: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41, 3012–3024 (2007)

    Article  Google Scholar 

  • Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J.: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38(12), 36-1–63-12 (2002)

    Article  Google Scholar 

  • Brownstein, K.R., Tarr, C.E.: Spin-lattice relaxation in a system governed by diffusion. J. Magn. Reson. 26, 17–24 (1977)

    Google Scholar 

  • Bryar, T.R., Daughney, C.J., Knight, R.J.: Paramagnetic effects of iron(III) species on nuclear magnetic relaxation of fluid protons in porous media. J. Magn. Reson. 142, 74–85 (2000)

    Article  Google Scholar 

  • Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford (1991)

    Google Scholar 

  • Carr, H., Purcell, E.: Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630 (1954)

    Article  Google Scholar 

  • Cey, E.E., David, L.R., Passmore, J.: Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils. J. Contam. Hydrol. 107, 45–57 (2009)

    Article  Google Scholar 

  • Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1975)

    Google Scholar 

  • Diaz, J., Rendueles, M., Diaz, M.: Straining phenomena in bacteria transport through natural porous media. Environ. Sci. Pollut. Res. 17, 400–409 (2010)

    Article  Google Scholar 

  • Dullien, F.A.L.: Porous Media—Fluid Transport and Porous Structure. Academic Press, San Diego (1992)

    Google Scholar 

  • Elimelech, M., Song, L.: Theoretical investigation of colloid separation from dilute aqueous suspensions by oppositely charged granular media. Sep. Technol. 2(1), 2–12 (1992)

    Article  Google Scholar 

  • Hahn, M.W., Abadzic, D., O’Melia, C.R.: Aquasols: on the role of secondary minima. Environ. Sci. Technol. 38(22), 5915–5924 (2004)

    Article  Google Scholar 

  • Harding, S.G., Baumann, H.: Nuclear magnetic resonance studies of solvent flow through chromatographic columns: effect of packing density on flow patterns. J. Chromatogr. A 905, 19–34 (2001)

    Article  Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces: Revised, 3rd edn. Academic press, Cambridge (2011)

    Google Scholar 

  • Jacobs, A., Lafolie, F., Herry, J.M., Debroux, M.: Kinetic adhesion of bacterial cells to sand: cell surface properties and adhesion rate. Colloids Surf. B 59(1), 35–45 (2007)

    Article  Google Scholar 

  • Johnson, P.R., Elimelech, M.: Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir 11, 801–812 (1995)

    Article  Google Scholar 

  • Keating, K., Knight, R.: A laboratory study to determine the effect of iron oxides on proton NMR measurements. Geophysics 72, 27–32 (2007)

    Article  Google Scholar 

  • Keita, E., Faure, P., Rodts, S., Coussot, P.: MRI evidence for a receding-front effect in drying porous media. Phys. Rev. E 87, 062303 (2013)

    Article  Google Scholar 

  • Ko, C.-H., Bhattacharjee, S., Elimelech, M.: Coupled influence of colloidal and hydrodynamic interactions on the RSA dynamic blocking function for particle deposition onto packed spherical collectors. J. Colloid Interface Sci. 229, 554–567 (2000)

    Article  Google Scholar 

  • Korb, J.-P., Monteilhet, L., McDonald, P.J., Mitchell, J.: Microstructure and texture of hydrated cement-based materials: a proton field cycling relaxometry approach. Cem. Concr. Res. 37, 295–302 (2007)

    Article  Google Scholar 

  • Lakshmanan, S., Holmes, W.M., Sloan, W.T., Phoenix, V.R.: Nanoparticle transport in saturated porous medium using magnetic resonance imaging. Chem. Eng. J. 266, 156–162 (2015a)

    Article  Google Scholar 

  • Lakshmanan, S., Holmes, W.M., Sloan, W.T., Phoenix, V.R.: Characterization of nanoparticle transport through quartz and dolomite gravels by magnetic resonance imaging. Int. J. Environ. Sci. Technol. 12, 3373–3384 (2015b)

    Article  Google Scholar 

  • Lehoux, A.P., Rodts, S., Faure, P., Michel, E., Courtier-Murias, D., Coussot, P.: MRI measurements evidence weak dispersion in homogeneous porous media. Phys. Rev. E 94, 053107 (2016)

    Article  Google Scholar 

  • Majdalani, S., Michel, E., Di Pietro, L., Angulo-Jaramillo, R., Rousseau, M.: Mobilization and preferential transport of soil particles during infiltration: a core-scale modeling approach. Water Resour. Res. 43(5), 1–14 (2007)

  • McCarthy, J.F., Zachara, J.M.: Cubsurface transport of contaminants. Environ. Sci. Technol. 23, 496–502 (1989)

    Google Scholar 

  • Meiboom, S., Gill, D.: Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958)

    Article  Google Scholar 

  • Nowach, B., Bucheli, T.D.: Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007)

    Article  Google Scholar 

  • Ochiai, N., Kraft, E.L., Selker, J.S.: Methods for colloid transport visualization in pore networks. Water Resour. Res. 42, 1–14 (2006)

    Article  Google Scholar 

  • Ramanan, B., Holmes, W.M., Sloan, W.T., Phoenix, V.R.: Investigation of nanoparticle transport inside coarse-grained geological media using magnetic resonance imaging. Environ. Sci. Technol. 46, 360–366 (2012)

    Article  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., Ghoshal, S.: Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Res. 50, 80–89 (2014)

    Article  Google Scholar 

  • Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf. A 107, 1–56 (1996)

    Article  Google Scholar 

  • Scheven, U.M., Harris, R., Johns, M.L.: Intrinsic dispersivity of randomly packed monodisperse spheres. Phys. Rev. Lett. 99, 054502 (2007)

    Article  Google Scholar 

  • Scheven, U.M.: Dispersion in non-ideal packed beds. AIChE J. 56(2), 289–297 (2010)

    Google Scholar 

  • Simunek, J., He, C., Pang, L., Bradford, S.A.: Colloid-facilitated solute transport in variably saturated porous media: numerical model and experimental verification. Vadose Zone J. 5, 1035–1047 (2006)

    Article  Google Scholar 

  • Song, L., Elimelech, M.: Dynamics of colloid deposition in porous media: modeling the role of retained particles. Colloids Surf. A 73, 49–63 (1993)

    Article  Google Scholar 

  • Tosco, T., Sethi, R.: Transport of non-Newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach. Environ. Sci. Technol. 44, 9062–9068 (2010)

    Article  Google Scholar 

  • Tufenkji, N., Elimelech, M.: Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21, 841–852 (2005)

    Article  Google Scholar 

  • Yao, K.M., Habibian, M.T., Omelia, C.R.: Water and waste water filtration. Concepts and applications. Environ. Sci. Technol. 5, 1105–1112 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge technical help from B. Jouaud and M. Vielpeau, from INRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Coussot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehoux, A.P., Faure, P., Michel, E. et al. Transport and Adsorption of Nano-Colloids in Porous Media Observed by Magnetic Resonance Imaging. Transp Porous Med 119, 403–423 (2017). https://doi.org/10.1007/s11242-017-0890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0890-4

Keywords

Navigation