Skip to main content
Log in

Reflection and Transmission of Plane Waves at a Water–Porous Sediment Interface with a Double-Porosity Substrate

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper investigates the wave propagation at the interface between the ocean and the ocean floor. The ocean floor is assumed to be composed of covered porous sediment with an underlying double-porosity substrate. For this purpose, plane wave reflection and transmission in the coupled water–porous sediment–double-porosity substrate system are analytically solved in terms of displacement potentials. Using numerical examples, the effects of the material properties of the underlying double-porosity substrate on the reflection coefficients are discussed in detail. Variations in pore and fracture fluid, fracture volume fraction, and permeability coefficients are considered. In addition, two cases of boundary conditions at the porous sediment–double-porosity substrate interface, i.e., sealed-pore boundary and open-pore boundary, are compared in the numerical calculations. Results show that material property variations in the double-porosity substrate may significantly affect the reflected wave in the overlying water if the sandwiched sediment depth is less than the critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ainslie, M.A.: Reflection transmission coefficients for a layered fluid sediment overlying a uniform solid substrate. J. Acoust. Soc. Am. 99(2), 893–902 (1996)

    Article  Google Scholar 

  • Albert, D.G.: A comparison between wave propagation in water-saturated and air-saturated porous materials. J. Appl. Phys. 73(1), 28–36 (1993)

    Article  Google Scholar 

  • Barenblatt, G.I., Zheltow, I.P., Kochina, T.N.: Basic concepts in the theory of seepage homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  Google Scholar 

  • Berryman, J.G., Wang, H.F.: The elastic coefficients of double-porosity models for fluid transport in jointed rock. J. Geophys. Res. 100, 34611–34627 (1995)

    Google Scholar 

  • Berryman, J.G., Wang, H.F.: Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. Int. J. Rock Mech. Min. Sci. 37, 63–78 (2000)

    Article  Google Scholar 

  • Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956a)

  • Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956b)

  • Cui, Z.W., Wang, K.X.: Influence of the squirt flow on reflection and refraction of elastic waves at a fluid/fluid-saturated poroelastic solid interface. Int. J. Eng. Sci. 41, 2179–2191 (2003)

    Article  Google Scholar 

  • Dai, Z.J., Kuang, Z.B., Zhao, S.X.: Reflection and transmission of elastic waves at the interface between an elastic solid and a double porosity medium. Int. J. Rock Mech. Min. Sci. 43, 961–971 (2006a)

    Article  Google Scholar 

  • Dai, Z.J., Kuang, Z.B., Zhao, S.X.: Reflection and transmission of elastic waves from the interface of fluid-saturated porous solid and a double porosity solid. Trans. Porous Media 65, 237–264 (2006b)

    Article  Google Scholar 

  • Dai, Z.J., Kuang, Z.B.: Reflection and transmission of elastic waves at the interface between water and a double porosity solid. Trans. Porous Media 72, 369–392 (2008)

    Article  Google Scholar 

  • Denneman, A.I.M., Drijkoningen, G.G., Smeulders, D.M.J., Wapenaar, K.: Reflection and transmission of waves at a fluid/porous-medium interface. Geophysics 67(1), 282–291 (2002)

    Google Scholar 

  • Deresiewicz, H., Rice, J.T.: The effect of boundary on wave propagation in a liquid-filled porous solid: III. Reflection of plane waves at a free plane boundary (general case). Bull. Seismol. Soc. Am. 52, 595–625 (1962)

    Google Scholar 

  • Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasicity. Bull. Seismol. Soc. Am. 53, 783–788 (1963)

    Google Scholar 

  • Hawker, K.E., Foreman, T.L.: A plane wave reflection loss model based on numerical integration. J. Acoust. Soc. Am. 64(5), 1470–1477 (1978)

    Article  Google Scholar 

  • Hovem, J.M., Kristensen, A.: Reflection loss at a bottom with a fluid sediment layer over a hard solid half-space. J. Acoust. Soc. Am. 92(1), 335–340 (1992)

    Article  Google Scholar 

  • Kuo, E.Y.T.: Acoustic wave scattering from two solid boundaries at the ocean bottom: reflection loss. IEEE J. Ocean. Eng. 17(1), 159–170 (1992)

    Article  Google Scholar 

  • Madeo, A., Gavrilyuk, S.: Propagation of acoustic waves in porous medium and their reflection and transmission at a pure-fluid/porous-medium permeable interface. Eur. J. Mech. A Solids 29, 897–910 (2010)

    Article  Google Scholar 

  • Ohkawa, K., Yamaoka, H., Yamamoto, T.: Acoustic backscattering from a sandy seabed. IEEE J. Ocean. Eng. 30(4), 700–708 (2005)

    Article  Google Scholar 

  • Santos, J.E., Corbero, J.M., Ravazzoli, C.L., Hensley, J.L.: Reflection and transmission coefficients in fluid-saturated porous medium. J. Acoust. Soc. Am. 91(4), 1911–1923 (1992)

    Article  Google Scholar 

  • Sharma, M.D.: 3-D wave propagation in a general anisotropic poroelastic medium: reflection and refraction at an interface with fluid. Geophys. J. Int. 157(2), 947–958 (2004)

    Article  Google Scholar 

  • Stoll, R.D.: Acoustic waves in ocean sediments. Geophysics 42(4), 715–725 (1977)

    Article  Google Scholar 

  • Stoll, R.D., Kan, T.K.: Reflection of acoustic waves at a water–sediment interface. J. Acoust. Soc. Am. 70(1), 149–156 (1981)

    Article  Google Scholar 

  • Tuncay, K., Corapcioglu, M.Y.: Wave propagation in fractured porous media. Trans. Porous Media 23, 237–258 (1996a)

    Google Scholar 

  • Tuncay, K., Corapcioglu, M.Y.: Body waves in fractured porous medium saturated by two immiscible Newtonian fluids. Trans. Porous Media 23, 259–273 (1996b)

    Google Scholar 

  • Wang, J.T., Jin, F., Zhang, C.H.: Reflection and transmission of plane waves at an interface of water/porous sediment with underlying solid substrate. Ocean. Eng. 63, 8–16 (2013)

    Article  Google Scholar 

  • Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3, 245–255 (1963)

    Google Scholar 

  • Williams, K.L., Grochocinski, J.M., Jackson, D.R.: Interface scattering by poroelastic seafloors: first-order theory. J. Acoust. Soc. Am. 110(6), 2956–2963 (2001)

    Article  Google Scholar 

  • Wu, K., Xue, Q., Adler, L.: Reflection and transmission of elastic waves from a fluid saturated porous solid boundary. J. Acoust. Soc. Am. 87(6), 2349–2358 (1990)

    Article  Google Scholar 

  • Yang, T., Broschat, S.L., Galea, C.: A comparison of perturbation theory and the small-slope approximation for acoustic scattering from a rough interface for a Biot medium. IEEE J. Ocean. Eng. 27(3), 403–412 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The present research was supported by the National Natural Science Foundation of China (No. 51179093), the National Basic Research Program of China (No. 2011CB013602), and the Program for New Century Excellent Talents in University (No. NCET-10-0531). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ting Wang.

Appendix

Appendix

The elements of the matrix [\(a\)] in Eq. (53) are given by

$$\begin{aligned} a_{11}&= l_{z}, \quad a_{12} =\left( {1-\overline{{\delta }}_{\mathrm{p}_1 } } \right) \overline{{l}}_{z\mathrm{p}_1 }, \quad a_{13} =\left( {1-\overline{{\delta }}_{\mathrm{p}_2 } } \right) \overline{{l}}_{z\mathrm{p}_2 }, \quad a_{14} =\left( {1-\overline{{\delta }}_\mathrm{s} } \right) l_x , \\ a_{15}&= -\left( {1-\overline{{\delta }}_{\mathrm{p}_1 } } \right) \overline{{l}}_{z\mathrm{p}_1 } , \quad a_{16}= -\left( {1-\overline{{\delta }}_{\mathrm{p}_2 } } \right) \overline{{l}}_{z\mathrm{p}_2 }, \quad a_{17} =\left( {1-\overline{{\delta }}_\mathrm{s} } \right) \overline{{l}}_x , \quad a_{18}=0, \\ a_{19}&= 0, \quad a_{1,10}=0, \quad a_{1,11}=0; \quad a_{21}={\omega }^{2}{\rho }_\mathrm{w}, \\ a_{22}&= -\left( {H-\overline{{\delta }}_{\mathrm{p}_1 } C} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) +2\mu l_x^2 , \quad a_{23} =-\left( {H-\overline{{\delta }}_{\mathrm{p}_2 } C} \right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) +2\mu l_x^2 ,\\ a_{24}&= -2Gl_x \overline{{l}}_{z\mathrm{s}}, \quad a_{25} =-\left( {H-\overline{{\delta }}_{\mathrm{p}_1 } C} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) +2\mu l_x^2 , \\ a_{26}&= -\left( {H-\overline{{\delta }}_{\mathrm{p}_2 } C} \right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) +2\overline{{G}}l_x^2 ,\quad a_{27} = 2\mu l_x \overline{{l}}_{z\mathrm{s}},\\ a_{28}&= 0, \quad a_{29}=0, \quad a_{2,10} =0, \quad a_{2,11} =0; \quad a_{31} = {\omega }^{2}{\rho }_\mathrm{w},\\ a_{32}&= \left( {-C+\overline{{\delta }}_{\mathrm{p}_1 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) , \quad a_{33} =\left( {-C+\overline{{\delta }}_{\mathrm{p}_2 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) ,\\ a_{34}&= 0,\quad a_{35} =\left( {-C+\overline{{\delta }}_{\mathrm{p}_1 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) , \quad a_{36} =\left( {-C+\overline{{\delta }}_{\mathrm{p}_2 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) , \\ a_{37}&= 0,\quad a_{38} =0, \quad a_{39} = 0, \quad a_{3,10} = 0, \quad a_{3,11} = 0;\quad a_{41}=0, \\ a_{42}&= 2l_x \overline{{l}}_{z\mathrm{p}_1 }, \quad a_{43} =2l_x \overline{{l}}_{z\mathrm{p}_2 }, \quad a_{44} =-\overline{{l}}_{z\mathrm{s}}^2 +l_x^2, a_{45} =-2l_x \overline{{l}}_{z\mathrm{p}_1 }, \quad a_{46} =-2l_x\overline{{l}}_{z\mathrm{p}_2 },\\ a_{47}&= -\overline{{l}}_{z\mathrm{s}}^2 +l_x^2 , a_{48}=0, \quad a_{49} = 0, \quad a_{4,10} = 0, \quad a_{4,11}=0;\quad a_{51}=0, \\ a_{52}&= -\overline{{l}}_{z\mathrm{p}_1 } \exp \left( {-i\overline{{l}}_{z\mathrm{p}_1 } h} \right) , \quad a_{53} =-\overline{{l}}_{z\mathrm{p}_2 } \exp \left( {-i\overline{{l}}_{z\mathrm{p}_2 }h} \right) , \quad a_{54} =-l_x \exp \left( {-i\overline{{l}}_{z\mathrm{s}} h} \right) ,\\ a_{55}&= \overline{{l}}_{z\mathrm{p}_1 } \exp \left( {i\overline{{l}}_{z\mathrm{p}_1} h} \right) , \quad a_{56} =\overline{{l}}_{z\mathrm{p}_2 } \exp \left( {i\overline{{l}}_{z\mathrm{p}_2 } h} \right) , \quad a_{57} =-l_x \exp \left( {i\overline{{l}}_{z\mathrm{s}} h} \right) , \end{aligned}$$
$$\begin{aligned} a_{58}&= l_{z\mathrm{p}_1 } \exp \left( {-il_{z\mathrm{p}_1 } h} \right) ,\quad a_{59}= l_{z\mathrm{p}_2 } \exp \left( {-il_{z\mathrm{p}_2 } h} \right) , \quad a_{5,10} =l_{z\mathrm{p}_3 } \exp \left( {-il_{z\mathrm{p}_3 } h} \right) , \\ a_{5,11}&= l_{x} \exp (-{il}_{z\mathrm{s}}h);\quad a_{61}=0, \quad a_{62} =-l_x \exp \left( {-i\overline{{l}}_{z\mathrm{p}_1 } h} \right) , \quad a_{63} =-l_x \exp \left( {-i\overline{{l}}_{z\mathrm{p}_2 } h} \right) ,\\ a_{64}&= \overline{{l}}_{z\mathrm{s}} \exp \left( {-i\overline{{l}}_{z\mathrm{s}} h} \right) ,\quad a_{65} =-l_x \exp \left( {i\overline{{l}}_{z\mathrm{p}_1 } h} \right) ,\quad a_{66} =-l_x \exp \left( {i\overline{{l}}_{z\mathrm{p}_2 } h} \right) , \\ a_{67}&= -\overline{{l}}_{z\mathrm{s}} \exp \left( {i\overline{{l}}_{z\mathrm{s}} h} \right) ,\quad a_{68} =l_x \exp \left( {-il_{z\mathrm{p}_1 } h} \right) ,\quad a_{69} =l_x \exp \left( {-il_{z\mathrm{p}_2 } h} \right) , \\ a_{6,10}&= l_x \exp \left( {-il_{z\mathrm{p}_3 } h} \right) ,\quad a_{6,11}=-l_{z\mathrm{s}} \exp (- il_{z\mathrm{s}}h); \quad a_{71} = 0,\\ a_{72}&= \left[ {-\left( {H-\overline{{\delta }}_{\mathrm{p}_{1} } C} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) +2\overline{{G}}l_x^2 } \right] \exp \left( {-i\overline{{l}}_{z\mathrm{p}_1 } h} \right) ,\\ a_{73}&= \left[ {-\left( {H-\overline{{\delta }}_{\mathrm{p}_{2} } C} \right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) +2\overline{{G}}l_x^2 } \right] \exp \left( {-i\overline{{l}}_{z\mathrm{p}_2 } h} \right) ,\\ a_{74}&= -2\overline{{G}}l_x \overline{{l}}_{z\mathrm{s}} \exp (-i\overline{{l}}_{z\mathrm{s}} h),\\ a_{75}&= \left[ {-\left( {H-\overline{{\delta }}_{\mathrm{p}_{1} } C} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) +2\overline{{G}}l_x^2 } \right] \exp \left( {i\overline{{l}}_{z\mathrm{p}_1 } h} \right) ,\\ a_{76}&= \left[ {-\left( {H-\overline{{\delta }}_{\mathrm{p}_{2}}C}\right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) +2\overline{{G}}l_x^2 } \right] \exp \left( {i\overline{{l}}_{z\mathrm{p}_2 } h} \right) ,\\ a_{77}&= 2\overline{{G}}l_x \overline{{l}}_{z\mathrm{s}} \exp (i\overline{{l}}_{z\mathrm{s}} h),\\ a_{78}&= \left\{ (K_\mathrm{u} -\frac{2}{3}G)(l_{z\mathrm{p}_1 }^2 +l_x^2 )+2Gl_{z\mathrm{p}_1 }^2\right. \\&\left. -K_\mathrm{u} \left[ {B^{(1)}v^{(1)}\varphi ^{(1)}(1-\delta _{\mathrm{p}_1 } ^{(1)})+B^{(2)}v^{(2)}\varphi ^{(2)}(1-\delta _{\mathrm{p}_1 } ^{(2)})} \right] (l_{z\mathrm{p}_1 }^2 +l_x^2 ) \right\} \exp \left( {-i\overline{{l}}_{z\mathrm{p}_1 } h}\right) ,\\ a_{79}&= \left\{ (K_\mathrm{u} -\frac{2}{3}G)(l_{z\mathrm{p}_2 }^2 +l_x^2 )+2Gl_{z\mathrm{p}_2 }^2\right. \\&\left. -K_\mathrm{u} \left[ {B^{(1)}v^{(1)}\varphi ^{(1)}(1-\delta _{\mathrm{p}_2 } ^{(1)})+B^{(2)}v^{(2)}\varphi ^{(2)}(1-\delta _{\mathrm{p}_2 } ^{(2)})} \right] (l_{z\mathrm{p}_2 }^2 +l_x^2 ) \right\} \exp \left( {-i\overline{{l}}_{z\mathrm{p}_2 } h} \right) ,\\ a_{7,10}&= \left\{ (K_\mathrm{u} -\frac{2}{3}G)(l_{z\mathrm{p}_3 }^2 +l_x^2 )+2Gl_{z\mathrm{p}_3 }^2\right. \\&\left. -K_\mathrm{u} \left[ {B^{(1)}v^{(1)}\varphi ^{(1)}(1-\delta _{\mathrm{p}_3 } ^{(1)})+B^{(2)}v^{(2)}\varphi ^{(2)}(1-\delta _{\mathrm{p}_3 } ^{(2)})} \right] (l_{z\mathrm{p}_3 }^2 +l_x^2 ) \right\} \exp \left( {-i\overline{{l}}_{z\mathrm{p}_3 } h} \right) , \end{aligned}$$
$$\begin{aligned} a_{7,11}&= 2{Gl}_{x}l_{z\mathrm{s}}\,\exp (-{il}_{z\mathrm{s}}h); \quad a_{81} = 0, \quad a_{82} =2\overline{{G}}l_x \overline{{l}}_{z\mathrm{p}_1 } \exp \left( {-i\overline{{l}}_{z\mathrm{p}_1 } h} \right) , \\ a_{83}&= 2\overline{{G}}l_x \overline{{l}}_{z\mathrm{p}_2 } \exp \left( {-i\overline{{l}}_{z\mathrm{p}_2 } h} \right) ,\quad a_{84} =\overline{{G}}\left( {-\overline{{l}}_{z\mathrm{s}}^2 +l_x^2 } \right) \exp \left( {-i\overline{{l}}_{z\mathrm{s}} h} \right) , \\ a_{85}&= -2\overline{{G}}l_x \overline{{l}}_{z\mathrm{p}_1 } \exp \left( {i\overline{{l}}_{z\mathrm{p}_1 } h} \right) ,\quad a_{86} = -2\overline{{G}}l_x \overline{{l}}_{z\mathrm{p}_2 } \exp \left( {i\overline{{l}}_{z\mathrm{p}_2 } h} \right) ,\\ a_{87}&= \overline{{G}}\left( {-\overline{{l}}_{z\mathrm{s}}^2 +l_x^2 } \right) \exp \left( {i\overline{{l}}_{z\mathrm{s}} h} \right) , \quad a_{88} =-2Gl_x l_{z\mathrm{p}_1 } \exp \left( {-il_{z\mathrm{p}_1 } h} \right) , \\ a_{89}&= -2Gl_x l_{z\mathrm{p}_2 } \exp \left( {-il_{z\mathrm{p}_2 } h} \right) ,\\ a_{8,10}&= -2Gl_x l_{z\mathrm{p}_3 } \exp \left( {-il_{z\mathrm{p}_3 } h} \right) , \quad a_{8,11}= G(l_{z\mathrm{s}}^{2}-l_{x}^{2})\exp (-{il}_{z\mathrm{s}}h);\\ a_{91}&= 0, \quad a_{92} =\left( {C-\overline{{\delta }}_{\mathrm{p}_1 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) \exp \left( {-i\overline{{l}}_{z\mathrm{p}_1 } h} \right) ,\\ a_{93}&= \left( {C-\overline{{\delta }}_{\mathrm{p}_2 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) \exp \left( {-i\overline{{l}}_{z\mathrm{p}_2 } h} \right) ,\\ a_{94}&= 0,\quad a_{95} =\left( {C-\overline{{\delta }}_{\mathrm{p}_1 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) \exp \left( {i\overline{{l}}_{z\mathrm{p}_1 } h} \right) , \\ a_{96}&= \left( {C-\overline{{\delta }}_{\mathrm{p}_2 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) \exp \left( {i\overline{{l}}_{z\mathrm{p}_2 } h} \right) ,\quad a_{97}=0,\\ a_{98}&= \left[ {-A_{13} +A_{23} v^{(1)} \varphi ^{(1)}(1-\delta _{\mathrm{p}_1 } ^{(1)})+A_{33} v^{(2)}\varphi ^{(2)}(1-\delta _{\mathrm{p}_1 } ^{(2)})} \right] (l_x ^{2}+l_{z\mathrm{p}_1 } ^{2})\exp (-il_{z\mathrm{p}_1 } h),\\ a_{99}&= \left[ {-A_{13} +A_{23} v^{(1)}\varphi ^{(1)}(1-\delta _{\mathrm{p}_2 } ^{(1)})+A_{33} v^{(2)}\varphi ^{(2)}(1-\delta _{\mathrm{p}_2 } ^{(2)})} \right] (l_x ^{2}+l_{z\mathrm{p}_2 } ^{2})\exp (-il_{z\mathrm{p}_2 } h),\\ a_{9,10}&= \left[ {-A_{13} +A_{23} v^{(1)}\varphi ^{(1)}(1-\delta _{\mathrm{p}_3 } ^{(1)})+A_{33} v^{(2)}\varphi ^{(2)}(1-\delta _{\mathrm{p}_3 } ^{(2)})} \right] (l_x ^{2}+l_{z\mathrm{p}_3 } ^{2})\exp (-il_{z\mathrm{p}_3 } h),\\ a_{9,11}&= 0\ \hbox {(if the open-pore boundary condition is applied) or} \end{aligned}$$
$$\begin{aligned} a^{\prime }_{91}&= a^{\prime }_{92}=a^{\prime }_{93}=a^{\prime }_{94}=a^{\prime }_{95}=a^{\prime }_{96}=a^{\prime }_{97}=0, \quad {a}'_{98} =l_{z\mathrm{p}_1 } (1-\delta _{\mathrm{p}_1 } ^{(2)})\exp (-il_{z\mathrm{p}_1 } h),\\ {a}'_{99}&= l_{z\mathrm{p}_2 } (1-\delta _{\mathrm{p}_2 } ^{(2)})\exp (-il_{z\mathrm{p}_2 } h),\quad {a}'_{9,10} =l_{z\mathrm{p}_3 } (1-\delta _{\mathrm{p}_3 } ^{(2)})\exp (-il_{z\mathrm{p}_3 } h), \\ {a}'_{9,11}&= l_x (1-\delta _\mathrm{s} ^{(2)})\exp (-il_{z\mathrm{p}_1 } h)\exp (-il_{z\mathrm{s}} h)\\&\quad \hbox {(if the sealed-pore boundary condition is applied)}; \\ a_{10,1}&= 0,\quad a_{10,2} = \left( {C-\overline{{\delta }}_{\mathrm{p}_1 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) \exp \left( {-i\overline{{l}}_{z\mathrm{p}_1 } h} \right) ,\\ a_{10,3}&= \left( {C-\overline{{\delta }}_{\mathrm{p}_2 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) \exp \left( {-i\overline{{l}}_{z\mathrm{p}_2 } h} \right) , \quad a_{10,4}=0,\\ a_{10,5}&= \left( {C-\overline{{\delta }}_{\mathrm{p}_1 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_1 }^2 +l_x^2 } \right) \exp \left( {i\overline{{l}}_{z\mathrm{p}_1 } h} \right) ,\\ a_{10,6}&= \left( {C-\overline{{\delta }}_{\mathrm{p}_2 } M} \right) \left( {\overline{{l}}_{z\mathrm{p}_2 }^2 +l_x^2 } \right) \exp \left( {i\overline{{l}}_{z\mathrm{p}_2 } h} \right) ,\quad a_{10,7}=0,\\ a_{10,8}&= \left[ {-A_{12} +A_{22} v^{(1)}\varphi ^{(1)}(1-\delta _{\mathrm{p}_1 } ^{(1)})+A_{23} v^{(2)}\varphi ^{(2)}(1-\delta _{\mathrm{p}_1 } ^{(2)})} \right] (l_x ^{2}+l_{z\mathrm{p}_1 } ^{2})\exp (-il_{z\mathrm{p}_1 } h),\\ a_{10,9}&= \left[ {-A_{12} +A_{22} v^{(1)}\varphi ^{(1)}(1-\delta _{\mathrm{p}_2 } ^{(1)})+A_{23} v^{(2)}\varphi ^{(2)}(1-\delta _{\mathrm{p}_2 } ^{(2)})} \right] (l_x ^{2}+l_{z\mathrm{p}_2 } ^{2})\exp (-il_{z\mathrm{p}_2 } h),\\ a_{10,10}&= \left[ {-A_{12} +A_{22} v^{(1)}\varphi ^{(1)}(1-\delta _{\mathrm{p}_3 } ^{(1)})+A_{23} v^{(2)}\varphi ^{(2)}(1-\delta _{\mathrm{p}_3 } ^{(2)})} \right] (l_x ^{2}+l_{z\mathrm{p}_3 } ^{2})\exp (-il_{z\mathrm{p}_3 } h),\\ a_{10,11}&= 0\ \hbox {(if the open-pore boundary condition is applied) or} \end{aligned}$$
$$\begin{aligned} a^{\prime }_{10,1}&= a^{\prime }_{10,2}=a^{\prime }_{10,3}=a^{\prime }_{10,4}=a^{\prime }_{10,5}=a^{\prime }_{10,6}=a^{\prime }_{10,7}=0,\\ {a}'_{10,8}&= l_{z\mathrm{p}_1 } (1-\delta _{\mathrm{p}_1 } ^{(1)})\exp (-il_{z\mathrm{p}_1 } h),{a}'_{10,9} =l_{z\mathrm{p}_2 } (1-\delta _{\mathrm{p}_2 } ^{(1)})\exp (-il_{z\mathrm{p}_2 } h),\\ {a}'_{10,10}&= l_{z\mathrm{p}_3 } (1-\delta _{\mathrm{p}_3 } ^{(1)})\exp (-il_{z\mathrm{p}_3 } h),\\ a^{\prime }_{10,11}&= l_{x}(1-{\delta }_\mathrm{s}^{(1)})\exp (-{il}_{z\mathrm{s}}h)\ \hbox {(if the sealed-pore boundary condition is applied)};\\ a_{11,1}&= 0,\\ a_{11,2}&= -\overline{{l}}_{z\mathrm{p}_1 } \overline{{\delta }}_{\mathrm{p}_1 } \exp (-i\overline{{l}}_{z\mathrm{p}_1 } h),\\ a_{11,3}&= -\overline{{l}}_{z\mathrm{p}_2 } \overline{{\delta }}_{\mathrm{p}_2 } \exp (-i\overline{{l}}_{z\mathrm{p}_2 } h),\\ a_{11,4}&= -\overline{{l}}_x \overline{{\delta }}_\mathrm{s} \exp (-i\overline{{l}}_{z\mathrm{s}} h),\\ a_{11,5}&= \overline{{l}}_{z\mathrm{p}_1 } \overline{{\delta }}_{\mathrm{p}_1 } \exp (i\overline{{l}}_{z\mathrm{p}_1 } h),\\ a_{11,6}&= \overline{{l}}_{z\mathrm{p}_2 } \overline{{\delta }}_{\mathrm{p}_2 } \exp (i\overline{{l}}_{z\mathrm{p}_2 } h),\\ a_{11,7}&= -l_x \overline{{\delta }}_\mathrm{s} \exp (i\overline{{l}}_{z\mathrm{s}} h),\\ a_{11,8}&= \left[ {v^{(1)}\varphi ^{(1)}(\overline{{\delta }}_{\mathrm{p}_1 } ^{(1)}-1)+v^{(2)}\varphi ^{(2)}(\overline{{\delta }}_{\mathrm{p}_1 } ^{(2)}-1)} \right] l_{z\mathrm{p}_1 } \exp (-il_{z\mathrm{p}_1 } h),\\ a_{11,9}&= \left[ {v^{(1)}\varphi ^{(1)}(\overline{{\delta }}_{\mathrm{p}_2 } ^{(1)}-1)+v^{(2)}\varphi ^{(2)}(\overline{{\delta }}_{\mathrm{p}_2 } ^{(2)}-1)} \right] l_{z\mathrm{p}_2 } \exp (-il_{z\mathrm{p}_2 } h),\\ a_{11,10}&= \left[ {v^{(1)}\varphi ^{(1)}(\overline{{\delta }}_{\mathrm{p}_3 } ^{(1)}-1)+v^{(2)}\varphi ^{(2)}(\overline{{\delta }}_{\mathrm{p}_3 } ^{(2)}-1)} \right] l_{z\mathrm{p}_3 } \exp (-il_{z\mathrm{p}_3 } h),\\ a_{11,11}&= \left[ {v^{(1)}\varphi ^{(1)}(\delta _\mathrm{s} ^{(1)}-1)+v^{(2)}\varphi ^{(2)}(\delta _\mathrm{s} ^{(2)}-1)} \right] l_{z\mathrm{s}} \exp (-il_{z\mathrm{s}} h)\\&\quad {\hbox {(if the open-pore boundary condition is applied) or}}\\ a^{\prime }_{11,1}&= 0,{a}'_{11,2} =-\overline{{l}}_{z\mathrm{p}_1 } \overline{{\delta }}_{\mathrm{p}_1 } \exp (-i\overline{{l}}_{z\mathrm{p}_1 } h),{a}'_{11,3} =-\overline{{l}}_{z\mathrm{p}_2 } \overline{{\delta }}_{\mathrm{p}_2 } \exp (-i\overline{{l}}_{z\mathrm{p}_2 } h),\\ {a}'_{11,4}&= -l_x \overline{{\delta }}_\mathrm{s} \exp (-i\overline{{l}}_{z\mathrm{s}} h),\\ {a}'_{11,5}&= \overline{{l}}_{z\mathrm{p}_1 } \overline{{\delta }}_{\mathrm{p}_1 } \exp (i\overline{{l}}_{z\mathrm{p}_1 } h),{a}'_{11,6} =\overline{{l}}_{z\mathrm{p}_2 } \overline{{\delta }}_{\mathrm{p}_2 } \exp (i\overline{{l}}_{z\mathrm{p}_2 } h), {a}'_{11,7} =-l_x \overline{{\delta }}_\mathrm{s} \exp (i\overline{{l}}_{z\mathrm{s}} h),\\ a^{\prime }_{11,8}&= 0, \quad a^{\prime }_{11,9}=0, \quad a^{\prime }_{11,10}=0, \quad a^{\prime }_{11,11}=0\\&\quad \hbox {(if the sealed-pore boundary condition is applied)}. \end{aligned}$$

The elements of the matrix [b] in Eq. (53) are given by

$$\begin{aligned}&b_{1}=l_{z}, \quad b_{2}=-{\omega }^{2}{ \rho }_{w}, \quad b_{3}=-{\omega }^{2}{\rho }_{w},\\&\quad b_{4}=b_{5}=b_{6}=b_{7}=b_{8}=b_{9}=b_{10}=b_{11}=0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyu, DD., Wang, JT., Jin, F. et al. Reflection and Transmission of Plane Waves at a Water–Porous Sediment Interface with a Double-Porosity Substrate. Transp Porous Med 103, 25–45 (2014). https://doi.org/10.1007/s11242-014-0286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0286-7

Keywords

Navigation