Skip to main content
Log in

Non-uniqueness, Numerical Artifacts, and Parameter Sensitivity in Simulating Steady-State and Transient Foam Flow Through Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The uniqueness and sensitivity of foam modeling parameters are crucial for simulating foam flow through porous media. In the absence of oil in the porous medium, the local-equilibrium foam model investigated in this work uses three parameters to describe the foam quality dependence: \(fmmob,\, fmdry\), and \(epdry\). Even for a specified value of \(epdry\), in some cases, two pairs of \(fmmob\) and \(fmdry\) values can experimentally match measured transition foam quality (\(f_\mathrm{g}^{t}\)) and transition foam apparent viscosity (\(\mu _\mathrm{foam,app}^t\)). This non-uniqueness can be broken by limiting the solution such that \(fmdry\) is smaller than the transition water saturation (\(S_\mathrm{w}^t\)). In addition, a three-parameter fit using all experimental data of apparent viscosity versus foam quality was developed to simultaneously estimate \(fmmob,\, fmdry\), and \(epdry\). However, a better strategy is to conduct and match a transient experiment, in addition to steady-state experiments, in which a gas displaces the surfactant solution at 100 % water saturation. This transient foam quality scans the entire range of fractional flow, and the values of the foam parameters that best match the experiment can be uniquely determined. The numerical artifact of pressure oscillations in simulating this transient foam process was investigated by comparing the finite difference algorithm with the method of characteristics. Sensitivity analyses indicated that the estimated foam parameters were highly dependent on the parameters used for the water and gas relative permeabilities. In particular, the water relative permeability exponent and connate water saturation are important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(epdry\) :

A parameter regulating the slope of the dry-out function near \(fmdry\)

\(f\) :

Fractional flow

\(f_\mathrm{g}^t \) :

Transition foam quality at which the maximum foam apparent viscosity is achieved

\(\textit{FM}\) :

A dimensionless foam function in the foam model

\(fmdry\) :

Critical water saturation in the foam model

\(fmmob\) :

Reference mobility reduction factor in the foam model

\(k\) :

Permeability (darcy)

\(k_\mathrm{r}\) :

Relative permeability

\(k_\mathrm{rw}^0 \) :

End-point relative permeability of the aqueous phase

\(k_\mathrm{rg}^0 \) :

End-point relative permeability of the gaseous phase

\(L \) :

Length of the porous medium (ft)

\(p \) :

Pressure (psi)

\(P_\mathrm{c}\) :

Capillary pressure (psi)

\(P_\mathrm{c}^{*}\) :

Limiting capillary pressure (psi)

\(u\) :

Superficial (Darcy) velocity (ft/day)

\(S\) :

Saturation

\(S_\mathrm{w}^t \) :

Transition water saturation at which the maximum foam apparent viscosity is achieved

\(t \) :

Time (s)

\(\mu \) :

Viscosity (cp)

\(\mu _\mathrm{foam,app}\) :

Local foam apparent viscosity (cp)

\({\overline{\mu }}_\mathrm{foam,app}\) :

Average foam apparent viscosity (cp)

\(\mu _\mathrm{foam,app}^t \) :

Maximum foam apparent viscosity obtained at the transition foam quality (cp)

\(\phi \) :

Porosity

\(\Phi _\mathrm{D}\) :

Flow potential (dimensionless gas pressure)

\(\omega \) :

Weighting parameter in the multi-variable, multi-dimensional search

\(\Theta \) :

Penalty function in the multi-variable, multi-dimensional search

\(\sigma \) :

Penalty coefficient in the multi-variable, multi-dimensional search

\(BC\) :

Boundary condition

\(nf\) :

Without foam

\(f\) :

With foam

\(n_\mathrm{g}\) :

Exponent in the \(k_\mathrm{rg} \) curve

\(n_\mathrm{w}\) :

Exponent in the \(k_\mathrm{rw} \) curve

\(t\) :

Transition between high- and low-quality foam

D:

Dimensionless

g:

Gaseous phase

gr:

Residual gas

w:

Aqueous phase

wc:

Connate water

References

  • Afsharpoor, A., Lee, G.S., Kam, S.I.: Mechanistic simulation of continuous gas injection period during surfactant-alternating-gas (SAG) processes using foam catastrophe theory. Chem. Eng. Sci. 65(11), 3615–3631 (2010)

    Article  Google Scholar 

  • Alvarez, J.M., Rivas, H.J., Rossen, W.R.: Unified model for steady-state foam behavior at high and low foam qualities. SPE J. 6(3), 325–333 (2001)

    Article  Google Scholar 

  • Andrianov, A., Farajzadeh, R., Mahmoodi Nick, M., Talanana, M., Zitha, P.: Immiscible foam for enhancing oil recovery: bulk and porous media experiments. Ind. Eng. Chem. Res. 51(5), 2214–2226 (2012)

    Article  Google Scholar 

  • Ashoori, E., Rossen, W.R.: Can formation relative permeabilities rule out a foam EOR process? SPE J. 17(2), 340–351 (2012)

    Article  Google Scholar 

  • Ashoori, E., van der Heijden, T.L.M., Rossen, W.R.: Fractional-flow theory of foam displacements with oil. SPE J. 15(2), 260–273 (2010)

    Article  Google Scholar 

  • Aster, R.C., Thurber, C.H., Borchers, B.: Parameter Estimation and Inverse Problems. International geophysics series, vol. 90. Elsevier Academic Press, Amsterdam (2005)

    Book  Google Scholar 

  • Avriel, M.: Nonlinear Programming: Analysis and Methods. Prentice-Hall series in automatic computation. Prentice-Hall, Englewood Cliffs (1976)

    Google Scholar 

  • Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear programming: theory and algorithms, 3rd edn. Wiley, New York (2006)

    Book  Google Scholar 

  • Blaker, T., Aarra, M.G., Skauge, A., Rasmussen, L., Celius, H.K., Martinsen, H.A., Vassenden, F.: Foam for gas mobility control in the Snorre field: the FAWAG project. SPE Reserv. Eval. Eng. 5(4), 317–323 (2002)

    Google Scholar 

  • Boeije, C.S., Rossen, W.R.: Fitting foam simulation model parameters to data. Paper presented at the IOR 2013–17th European symposium on improved oil recovery, St. Petersburg, 2013

  • Bruges, E.A., Latto, B., Ray, A.K.: New correlations and tables of coefficient of viscosity of water and steam up to 1000 bar and 1000 \(\circ \)C. Int. J. Heat Mass Transf. 9(5), 465–480 (1966)

    Article  Google Scholar 

  • Cheng, L., Reme, A.B., Shan, D., Coombe, D.A., Rossen, W.R.: Simulating foam processes at high and low foam qualities. Paper presented at the SPE/DOE improved oil recovery symposium, Tulsa, Oklahoma (2000)

  • Computer Modeling Group: STARS\(^{\rm TM}\) user’s guide, Calgary (2007)

  • Dholkawala, Z.F., Sarma, H.K., Kam, S.I.: Application of fractional flow theory to foams in porous media. J. Pet. Sci. Eng. 57(1–2), 152–165 (2007)

    Google Scholar 

  • Dong, Y., Rossen, W.: Insights from Fractional-Flow Theory for Models for Foam IOR. In: 14th European symposium on improved oil recovery (2007)

  • Falls, A.H., Hirasaki, G.J., Patzek, T.W., Gauglitz, D.A., Miller, D.D., Ratulowski, T.: Development of a mechanistic foam simulator: the population balance and generation by snap-off. SPE Reserv. Eng. 3(3), 884–892 (1988)

    Article  Google Scholar 

  • Farajzadeh, R., Andrianov, A., Krastev, R., Hirasaki, G.J., Rossen, W.R.: Foam–oil interaction in porous media: implications for foam assisted enhanced oil recovery. Adv. Colloid Interf. Sci. 183, 1–13 (2012a)

    Article  Google Scholar 

  • Farajzadeh, R., Wassing, B.M., Boerrigter, P.M.: Foam assisted gas-oil gravity drainage in naturally-fractured reservoirs. J. Pet. Sci. Eng. 94–95, 112–122 (2012b)

    Article  Google Scholar 

  • Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)

    Google Scholar 

  • Friedmann, F., Chen, W.H., Gauglitz, P.A.: Experimental and simulation study of high-temperature foam displacement in porous media. SPE Reserv. Eng. 6(1), 37–45 (1991). doi:10.2118/17357-pa

    Article  Google Scholar 

  • Heller, J.P.: CO2 foams in enhanced oil-recovery. In: Foams: Fundamentals and Applications in the Petroleum Industry, vol. 242, pp. 201–234. American Chemical Society, Washington, DC (1994)

  • Kam, S.I., Nguyen, Q.P., Li, Q., Rossen, W.R.: Dynamic simulations with an improved model for foam generation. SPE J. 12(1), 35–48 (2007)

    Article  Google Scholar 

  • Kam, S.I., Rossen, W.R.: A model for foam generation in homogeneous media. SPE J. 8(4), 417–425 (2003)

    Article  Google Scholar 

  • Khatib, Z.I., Hirasaki, G.J., Falls, A.H.: Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media. SPE Reserv. Eng. 3(3), 919–926 (1988)

    Article  Google Scholar 

  • Kovscek, A.R., Patzek, T.W., Radke, C.J.: A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone. Chem. Eng. Sci. 50(23), 3783–3799 (1995)

    Article  Google Scholar 

  • Kovscek, A.R., Radke, C.J.: Fundamentals of foam transport in porous-media. In: Foams: Fundamentals and Applications in the Petroleum Industry, vol. 242, pp. 115–163. American Chemical Society, Washington, DC (1994)

  • Lee, H.O., Heller, J.P., Hoefer, A.M.W.: Change in apparent viscosity of \({\text{ CO }}_2\) foam with rock permeability. SPE Reserv. Eng. 6(4), 421–428 (1991). doi: 10.2118/20194-pa

    Article  Google Scholar 

  • Lemmon, E.W., Jacobsen, R.T.: Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25(1), 21–69 (2004)

    Article  Google Scholar 

  • Li, R.F., Yan, W., Liu, S.H., Hirasaki, G.J., Miller, C.A.: Foam mobility control for surfactant enhanced oil recovery. SPE J. 15(4), 934–948 (2010)

    Article  Google Scholar 

  • Liu, M., Andrianov, A., Rossen, W.R.: Sweep efficiency in \({\text{ CO } }_2\) foam simulations with oil (SPE 142999). Paper Presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna (2011)

  • Lopez-Salinas, J.L., Ma, K., Puerto, M.C., Miller, C.A., Biswal, S.L., Hirasaki, G.J.: Estimation of parameters for the simulation of foam flow through porous media: effects of surfactant concentration and fluid velocity (in preparation)

  • Ma, K.: Transport of surfactant and foam in porous media for enhanced oil recovery processes. Ph.D. Thesis, Rice University (2013)

  • Ma, K., Lopez-Salinas, J.L., Puerto, M.C., Miller, C.A., Biswal, S.L., Hirasaki, G.J.: Estimation of parameters for the simulation of foam flow through porous media. Part 1: the dry-out effect. Energy Fuels 27(5), 2363–2375 (2013)

    Article  Google Scholar 

  • Masalmeh, S.K., Wei, L., Blom, C.P.A.: Mobility control for gas injection in heterogeneous carbonate reservoirs: comparison of foams versus polymers (SPE 142542). Paper presented at the SPE middle east oil and gas show and conference, Manama (2011)

  • Namdar Zanganeh, M., Kam, S.I., LaForce, T., Rossen, W.R.: The method of characteristics applied to oil displacement by foam. SPE J. 16(1), 8–23 (2011). doi:10.2118/121580-pa

    Article  Google Scholar 

  • Namdar Zanganeh, M., Kraaijevanger, J.F.B.M., Buurman, H.W., Jansen, J.D., Rossen, W.R.: Adjoint-Based Optimization of a Foam EOR Process. Paper presented at the 13th European conference on the mathematics of oil recovery, Biarritz (2012)

  • Patzek, T.W.: Description of foam flow in porous media by the population balance method. ACS Symp. Ser. 373, 326–341 (1988)

    Article  Google Scholar 

  • Renkema, W.J., Rossen, W.R.: Success of foam SAG processes in heterogeneous reservoirs (SPE 110408). Paper presented at the SPE annual technical conference and exhibition, Anaheim (2007)

  • Roostapour, A., Kam, S.I.: Anomalous foam-fractional-flow solutions at high-injection foam quality. SPE Reserv. Eval. Eng. 16(1), 40–50 (2013). doi:10.2118/152907-pa

    Google Scholar 

  • Rossen, W.: Numerical challenges in foam simulation: a review. Paper presented at the SPE annual technical conference and exhibition (SPE 166232), New Orleans (2013)

  • Rossen, W.R.: Foams in Enhanced Oil Recovery. Foams: theory, measurements, and applications, vol. 57, pp. 413–464. Marcel Dekker, New York (1996)

  • Rossen, W.R., Zeilinger, S.C., Shi, J.X., Lim, M.T.: Simplified mechanistic simulation of foam processes in porous media. SPE J. 4(3), 279–287 (1999). doi:10.2118/57678-pa

    Article  Google Scholar 

  • Shan, D., Rossen, W.R.: Optimal Injection strategies for foam IOR. SPE J. 9(2), 132–150 (2004). doi:10.2118/88811-pa

    Article  Google Scholar 

  • Spirov, P., Rudyk, S., Khan, A.: Foam assisted WAG, Snorre revisit with new foam screening model (SPE 150829). In: North Africa technical conference and exhibition, Cairo (2012)

  • The MathWorks Inc.: MATLAB User’s Guide, Natick (2012)

  • Vassenden, F., Holt, T., Ghaderi, A., Solheim, A.: Foam propagation on semi-reservoir scale. SPE Reserv. Eval. Eng. 2(5), 436–441 (1999)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support provided by the Abu Dhabi National Oil Company (ADNOC), the Abu Dhabi Oil R&D Sub-Committee, the Abu Dhabi Company for Onshore Oil Operations (ADCO), the Zakum Development Company (ZADCO), the Abu Dhabi Marine Operating Company (ADMA-OPCO) and the Petroleum Institute (PI), the U.A.E and partial support from the U.S. Department of Energy (under Award No. DE-FE0005902), the Petróleos Mexicanos (PEMEX), and Shell Global Solutions International. We thank Yongchao Zeng at Rice University for assistance in the development of the MATLAB code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Hirasaki.

Appendix

Appendix

In addition to Eq. (1), the material balance of 1-D transient foam flow through porous media is governed by

$$\begin{aligned} {\phi } \frac{\partial S_\mathrm{w}}{\partial t}+\frac{\partial u_\mathrm{w}}{\partial x}&= 0 \end{aligned}$$
(19)
$$\begin{aligned} {\phi } \frac{\partial S_\mathrm{g}}{\partial t}+\frac{\partial u_\mathrm{g}}{\partial x}&= 0. \end{aligned}$$
(20)

If the dimensionless variables \(t_\mathrm{D} =\frac{u^{BC}t}{{\phi } L},\, x_\mathrm{D} =\frac{x}{L}, f_\mathrm{w}=\frac{u_\mathrm{w} }{u^{BC}}\), and \(f_\mathrm{g} =\frac{u_\mathrm{g}}{u^{BC}}\) are used, we can use the following partial differential equation for the gaseous phase:

$$\begin{aligned} \frac{\partial S_\mathrm{g} }{\partial t_\mathrm{D} }+\frac{\partial f_\mathrm{g} }{\partial x_\mathrm{D}}=0. \end{aligned}$$
(21)

The gas fractional flow curve (\(f_\mathrm{g}-S_\mathrm{g}\)) is plotted in Fig. 12 using Eqs. (15).

Fig. 12
figure 12

Gas fractional flow curve and location of the shock front. \(fmmob={47196}, fmdry={0.1006}\) and \(epdry={500}\). The remaining parameters used are shown in Table 2

As shown in Figure 12, a shock front will result if 100% gas displaces 100% surfactant solution. The shock saturation is determined by drawing a straight line from the initial condition (\(S_{\mathrm{g,IC}} \) = 0), which is tangential to the fractional flow curve. In the case in Fig. 12, we observe \(S_{\mathrm{g,shock}} \) = 0.9182. The wave velocities and saturation profiles can be constructed based on Figure 12 using Eq. (22):

$$\begin{aligned} \left. \frac{\mathrm{d}x_\mathrm{D} }{\mathrm{d}t_\mathrm{D} }\right| _{S_\mathrm{g} =a} =\left. \frac{\mathrm{d}f_\mathrm{g} }{\mathrm{d}S_\mathrm{g} } \right| _{S_\mathrm{g} =a} \end{aligned}$$
(22)

If the saturation “a” in Eq. (22) is smaller than \(S_{\mathrm{g,shock}}\), then the wave velocity at \(S_\mathrm{g} =a\) is equal to the shock velocity (Table 2).

Table 2 Parameters used to model foam in this work

According the definitions of the local foam apparent viscosity (Eq. (17)) and the average foam apparent viscosity (Eq. (18)), the following relationship is obtained:

$$\begin{aligned} {\overline{\mu }}_{\mathrm{foam,app}}&= \frac{k\left( {p_{\mathrm{out}} -p_{\mathrm{in}} } \right) }{\left( {u_\mathrm{w} +u_\mathrm{g} } \right) L} \nonumber \\&= \frac{k}{L}\int \limits _0^L {\frac{1}{u_\mathrm{w} +u_\mathrm{g} }\cdot \frac{\mathrm{d}p}{\mathrm{d}x}\mathrm{d}x} \nonumber \\&= \frac{k}{L}\int \limits _0^L {\frac{1}{-\frac{kk_\mathrm{rw} }{\mu _\mathrm{w} }\cdot \frac{\mathrm{d}p}{\mathrm{d}x}-\frac{kk_{\mathrm{rg}}^\mathrm{f} }{\mu _\mathrm{g} }\cdot \frac{\mathrm{d}p}{\mathrm{d}x}}\cdot \frac{\mathrm{d}p}{\mathrm{d}x}\mathrm{d}x} \nonumber \\&= \int \limits _0^1 {\frac{1}{\frac{k_{\mathrm{rw}} }{\mu _\mathrm{w} }+\frac{k_{\mathrm{rg}}^\mathrm{f} }{\mu _\mathrm{g} } }}\mathrm{d}x_{\mathrm{D}} \nonumber \\&= \int \limits _0^1 {\mu _{\mathrm{foam,app}} \mathrm{d}x_\mathrm{D} }. \end{aligned}$$
(23)

At a specific time \(t_\mathrm{D} =t_0 \), both \(k_{\mathrm{rw}} \) and \(k_{\mathrm{rg}}^\mathrm{f} \) are functions of \(S_\mathrm{g}\). The saturation profile is already known by computing the wave velocities. Thus, Eq. (23) can be approximated by numerical integration using available data points:

$$\begin{aligned} {\overline{\mu }}_{\mathrm{foam,app}} =\int \limits _0^1 {\frac{1}{\frac{k_{\mathrm{rw}} }{\mu _\mathrm{w} }+\frac{k_{\mathrm{rg}}^\mathrm{f} }{\mu _\mathrm{g} }}\mathrm{d}x_\mathrm{D} \approx \sum _{i=1}^n {\frac{1}{\frac{k_{\mathrm{rw}} \left( {S_{\mathrm{g},i} } \right) }{\mu _\mathrm{w}}+\frac{k_{\mathrm{rg}}^\mathrm{f} \left( {S_{\mathrm{g},i} } \right) }{\mu _\mathrm{g} }}\Delta x_{\mathrm{D},i} } }. \end{aligned}$$
(24)

Equation (24) is used to calculate the average foam apparent viscosity in the MOC solution. For FD simulations, the average foam apparent viscosity is approximated by the pressure difference between the first and last grid blocks:

$$\begin{aligned} {\overline{\mu }}_{\mathrm{foam,app}} =\frac{k\left( {p_{NX} -p_1 } \right) }{\left( {u_\mathrm{w} +u_\mathrm{g} } \right) L}\cdot \frac{NX}{NX-1}. \end{aligned}$$
(25)

In steady-state foam calculations, the transition water saturation \(S_\mathrm{w}^t \) can be calculated without knowing the values of the foam modeling parameters (\(fmmob,\, fmdry\), and \(epdry\)). According to Eqs. (8) and (9), one can obtain

$$\begin{aligned} k_{\mathrm{rw}} (S_\mathrm{w}^t )=\frac{\mu _\mathrm{w} (1-f_\mathrm{g}^t )}{\mu _{\mathrm{foam,app}}^t } \end{aligned}$$
(26)

Equating Eq. (4) with (26) at the transition water saturation yields

$$\begin{aligned} S_\mathrm{w}^t =S_{\mathrm{wc}} +(1-S_{\mathrm{gr}} -S_{\mathrm{wc}} )\left[ {\frac{\mu _\mathrm{w} (1-f_\mathrm{g}^t )}{k_{\mathrm{rw}}^0 \mu _{\mathrm{foam,app}}^t }} \right] ^{\frac{1}{^{n_\mathrm{w}}}}. \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, K., Farajzadeh, R., Lopez-Salinas, J.L. et al. Non-uniqueness, Numerical Artifacts, and Parameter Sensitivity in Simulating Steady-State and Transient Foam Flow Through Porous Media. Transp Porous Med 102, 325–348 (2014). https://doi.org/10.1007/s11242-014-0276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0276-9

Keywords

Navigation