Advertisement

Transport in Porous Media

, Volume 102, Issue 2, pp 275–299 | Cite as

Nonlinear Inversion of an Unconfined Aquifer: Simultaneous Estimation of Heterogeneous Hydraulic Conductivities, Recharge Rates, and Boundary Conditions

  • Ye ZhangEmail author
Article

Abstract

A new inverse method is developed to simultaneously estimate heterogeneous hydraulic conductivities, source/sink rates, and unknown boundary conditions for steady-state flow in an unconfined aquifer. Unlike objective function-based techniques, the new method does not optimize any data-model misfits. Instead, its formulation is developed by honoring physical flow principles as well as observation data at sampled locations. Under the Dupuit–Forchheimer assumption of negligible vertical flow, accuracy and stability of the new method are demonstrated using synthetic heterogeneous aquifer problems with increasingly complex flow: (1) aquifer domains without source/sink effects; (2) aquifer domains with a point sink (a pumping well operating under a constant discharge rate); (3) aquifer domains with constant or spatially variable recharge; (4) aquifer domains with constant or spatially variable recharge undergoing single-well pumping. For all problems, inversion yields stable solutions under increasing head measurement errors (up to \(\pm \)10 % of the total head variation in a problem), although accuracy of the estimated parameters degrades with the increasing errors. The inverse method is successfully tested on problems with high hydraulic conductivity contrasts—up to 10,000 times between the maximum and minimum values. In inverting several heterogeneous problems, if the aquifer is assumed homogeneous with a constant recharge rate, physically meaningful parameter estimates (i.e., equivalent conductivities and mean recharge rates) can be determined. Alternatively, if the inverse parameterization contains spurious parameters, inversion can identify such parameters, while the simultaneous estimation of non-spurious parameters is not affected. The method obviates the well-known issues associated with model “structure errors”, when inverse parameterization either simplifies or complexifies the true parameter field.

Keywords

Unconfined aquifer Inversion Hydraulic conductivity Recharge rate Boundary conditions 

Notes

Acknowledgments

This research is supported by the University of Wyoming Center for Fundamentals of Subsurface Flow (WYDEQ49811ZH). The author acknowledges helpful comments of two anonymous reviewers who helped to improve the content and organization of this paper.

References

  1. Bear, J.: Dynamics of Fluids in Porous Media, vol. 764, 1st edn. Elsevier, New York (1972)Google Scholar
  2. Bouwer, H., Rice, R.C.: A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resourc. Res. 12(3), 423–428 (1976)CrossRefGoogle Scholar
  3. Cardiff, M.: W, B., Kitanidis, P., Malama, B., Revil, A., Straface, S., Rizzo, E.: A potential-based inversion of unconfined steady-state hydraulic tomography. Ground Water 47(2), 259–270 (2009)CrossRefGoogle Scholar
  4. Carrera, J., Neuman, S.P.: Estimation of aquifer parameters under transient and steady state conditions: III. Application to synthetic and field data. Water Resourc. Res. 22(2), 228–242 (1986)Google Scholar
  5. Cooley, R.L., Christensen, S.: Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media. Adv. Water Resourc. 29(5), 639–656 (2005)CrossRefGoogle Scholar
  6. Cooper, H.H., Bredehoeft, J.D., Papadopulos, I.S.: Response of a finite-diameter well to an instantaneous charge of water. Water Resourc. Res. 3, 263–269 (1967)CrossRefGoogle Scholar
  7. Crisman, S.A., Molz, F.J., Dunn, D.L., Sappington, F.C.: Application procedures for the electromagnetic borehole flowmeter in shallow unconfined aquifers. Groundw. Monit. Remediat. 12(3), 96–100 (2007)Google Scholar
  8. Dagan, G.: A method determining the permeability and effective porosity of unconfined anisotropic aquifers. Water Resourc. Res. 3(4), 1059–1071 (1967)CrossRefGoogle Scholar
  9. Dagan, G.: A note on packer, slug, and recovery tests in unconfined aquifers. Water Resourc. Res. 14, 929–934 (1978)CrossRefGoogle Scholar
  10. Darnet, M., Marquis, G., Sailhac, P.: Estimating aquifer hydraulic properties from the inversion of surface streaming potential (SP) anomalies. Geophys. Res. Lett. 30(13), 1679 (2003). doi: 10.1029/2003GL017631 CrossRefGoogle Scholar
  11. Day-Lewis, F., Lane, J.W., Gorelick, S.M.: Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer. Hydrogeol. J. 14(1–2), 1–14 (2006)CrossRefGoogle Scholar
  12. Dettinger, M.D.: Reconnaissance estimates of natural recharge to desert basins in Nevada, U.S.A., by using chloride-balance calculations. J. Hydrol. 106, 55–78 (1989)CrossRefGoogle Scholar
  13. Doherty, J., Welter, D.: A short exploration of structure noise. Water Resourc. Res. 46, W05525 (2010). doi: 10.1029/2009WR008377 CrossRefGoogle Scholar
  14. Fienen, M., Hunt, R., Krabbenhoft, D., Clemo, T.: Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach. Water Resourc. Res. 45, W08405 (2009). doi: 10.1029/2008WR007431 CrossRefGoogle Scholar
  15. Gaganis, P., Smith, L.: Accounting for model error in risk assessments: Alternative to adopting a bias towards conservative risk estimates in decision models. Adv. Water Resourc. 31(8), 1074–1086 (2008)CrossRefGoogle Scholar
  16. Haitjema, H.M., Mitchell-Bruker, S.: Are water tables a subdued replica of the topography? Ground Water 43(6), 781–786 (2005)Google Scholar
  17. Hantush, M.S., Jacob, C.E.: Non-steady radial flow in an infinite leaky aquifer. Trans. Am. Geophys. Union 36(1), 95–100 (1955)CrossRefGoogle Scholar
  18. Harvey, C.F., Gorelick, S.M.: Mapping hydraulic conductivity: Sequential conditioning with measurements of solute arrival time, hydraulic head, and local conductivity. Water Resourc. Res. 31(7), 1615–1626 (1995)CrossRefGoogle Scholar
  19. Healy, R.W., Cook, P.: Using groundwater levels to estimate recharge. Hydrogeol. J. 10(10), 91–109 (2002)CrossRefGoogle Scholar
  20. Hill, M.C., Tiedeman, C.R.: Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty, vol. 480, 1st edn. Wiley-Interscience, Berlin (2007)Google Scholar
  21. Irsa, J., Zhang, Y.: A new direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions. Water Resourc. Res. 48, W09526 (2012). doi: 10.1029/2011WR011756 CrossRefGoogle Scholar
  22. Jyrkama, M.I., Sykes, J.F., Norman, S.D.: Recharge estimation for transient ground water modeling. Ground Water 40(6), 638–648 (2002)CrossRefGoogle Scholar
  23. Keating, E.H., Doherty, J., Vrugt, J.A., Kang, Q.: Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality. Water Resourc. Res. 46, W10517 (2010). doi: 10.1029/2009WR008584 CrossRefGoogle Scholar
  24. Li, W., Englert, A., Cirpka, O.A., Vereecken, H.: Three dimensional geostatistical inversion of flowmeter and pumping test data. Ground Water 46(2), 193–201 (2008)CrossRefGoogle Scholar
  25. Lin, Y.F., Wang, J., Valocchi, A.: PRO-GRADE: GIS toolkits for ground water recharge and discharge estimation. Ground Water 47(1), 122–128 (2009)CrossRefGoogle Scholar
  26. Liu, G., Chen, Y., Zhang, D.: Investigation of flow and transport processes at the MADE site using ensemble Kalman filter. Adv. Water Resourc. 31, 975–986 (2008)CrossRefGoogle Scholar
  27. Liu, X., Kitanidis, P.: Large-scale inverse modeling with an application in hydraulic tomography. Water Resourc. Res. 47, W02501 (2011). doi: 10.1029/2010WR009144 Google Scholar
  28. Mao, D., Yeh, T.C.J., Wan, L., Wen, J.C., Lu, W., Lee, C.H., Hsu, K.C.: Joint interpretation of sequential pumping tests in unconfined aquifers. Water Resourc. Res. 49, 1782–1796 (2013)CrossRefGoogle Scholar
  29. Mao, D., Yeh, T.C.J., Wan, L., Hsu, K.C., Lee, C.H., Wen, J.C.: Necessary conditions for inverse modeling of flow through variably saturated porous media. Adv. Water Resourc. 52, 50–61 (2013)CrossRefGoogle Scholar
  30. McKenna, S., Poeter, E.: Field example of data fusion for site characterization. Water Resourc. Res. 31(12), 3229–3240 (1995)CrossRefGoogle Scholar
  31. Mishra, P.K., Neuman, S.P.: Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer. Water Resourc. Res. 46, W07508 (2010). doi: 10.1029/2009WR008899 CrossRefGoogle Scholar
  32. Mishra, P.K., Neuman, S.P.: Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer. Water Resourc. Res. 47(5), W05553 (2011). doi: 10.1029/2010WR010177 CrossRefGoogle Scholar
  33. Moench, A., Garabedian, S., LeBlanc, D.: Estimation of Hydraulic Parameters from an Unconfined Aquifer Test Conducted in a Glacial Outwash Deposit, Cape Cod, Massachusetts. In: US Geological Survey Professional Paper, vol. 1629, pp. 1–51. US Geological Survey, Reston (2001)Google Scholar
  34. Moench, A.F.: Importance of the vadose zone in analyses of unconfined aquifer tests. Ground Water 42(2), 223–233 (2004). doi: 10.1111/j.1745 CrossRefGoogle Scholar
  35. Neuman, S.P.: Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resourc. Res. 8(4), 1031–1045 (1972)CrossRefGoogle Scholar
  36. Neuman, S.: Generalized scaling of permeabilities; validation and effect of support scale. Geophys. Res. Lett. 21(5), 349–352 (1994)CrossRefGoogle Scholar
  37. Neuman, S.P., Blattstein, A., Riva, M., Tartakovsky, D.M., Guadagnini, A., Ptak, T.: Type curve interpretation of late-time pumping test data in randomly heterogeneous aquifers. Water Resourc. Res. 43, W10421 (2007). doi: 10.1029/2007WR005871 CrossRefGoogle Scholar
  38. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching, vol. 380, 1st edn. Cambridge Unviersity Press, Cambridge (2008)Google Scholar
  39. Pan, L., Warrick, A.W., Wierenga, P.: Downward water flow through sloping layers in the vadose zone: time-dependence and effect of slope length. J. Hydrol. 199, 36–52 (1997)CrossRefGoogle Scholar
  40. Portniaguine, O., Solomon, D.: Parmater estimation using groundwater age and head data, Cap Cod. Massachusetts. Water Resourc. Res. 34(4), 637–645 (1998)CrossRefGoogle Scholar
  41. Reynolds, D.A., Marimuthu, S.: Deuterium composition and flow path analysis as additional calibration targets to calibrate groundwater flow simulation in a coastal wetlands system. Hydrogeol. J. 15, 515–535 (2007)CrossRefGoogle Scholar
  42. Russo, D., Zaidel, J., Lauter, A.: Numerical analysis of flow and transport in a combined heterogeneous vadose zone-groundwater system. Adv. Water Resourc. 24, 49–62 (2001)CrossRefGoogle Scholar
  43. Saiers, J.E., Genereux, D.P., Bolster, C.H.: Influence of calibration methodology on ground water flow predictions. Ground Water 42(1), 32–44 (2004)CrossRefGoogle Scholar
  44. Sakaki, T., Frippiat, C.C., Komatsu, M., Illangasekare, T.H.: On the value of lithofacies data for improving groundwater flow model accuracy in a three-dimensional laboratory-scale synthetic aquifer. Water Resourc. Res. 45, W11404 (2009). doi: 10.1029/2008WR007229 Google Scholar
  45. Sanchez-Vila, X., Carrera, J., Girardi, J.: Scale effects in transmissivity. J. Hydrol. 183, 1–22 (1996)CrossRefGoogle Scholar
  46. Scalon, B.R., Healy, R.W., Cook, P.G.: Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 10, 18–37 (2002)CrossRefGoogle Scholar
  47. Schulze-Makuch, D., Carlson, D., Cherkauer, D., Malik, P.: Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37(6), 904–919 (1999)CrossRefGoogle Scholar
  48. Simmers, I.: Groundwater Recharge: An Overview Of Estimation “Problems” and Recent Developments, pp. 107–115. Geological Society of London, London (1998)Google Scholar
  49. Tan, S., Shuy, E., Chua, L.: Regression method for estimating rainfall recharge at unconfined sandy aquifers with an equatorial climate. Hydrogeol. Process. 21, 3514–3526 (2007)CrossRefGoogle Scholar
  50. The Mathworks Inc.: Optimization Toolbox\(^{\rm TM}\) Users Guide. Mathworks, Natick (2012)Google Scholar
  51. Tiedeman, C.R., Hill, M.C., D’Agnese, F.A., Faunt, C.C.: Methods for using groundwater model predictions to guide hydrogeologic data collection, with application to the Death Valley regional groundwater flow system. Water Resourc. Res. 39(1), 1010 (2003). doi: 10.1029/2001WR001255 CrossRefGoogle Scholar
  52. Wang, D., Zhang, Y., Irsa, J.: Proceeding of the 2013 AGU Hydrology Days (2013). http://hydrologydays.colostate.edu/Papers_13/Dongdong_paper.pdf. Accessed 16 August 2013
  53. Zhang, Y., Gable, C.W., Person, M.: Equivalent hydraulic conductivity of an experimental stratigraphy–implications for basin-scale flow simulations. Water Resourc. Res. 42(7), W05404 (2006). doi: 10.1029/2005WR004720 Google Scholar
  54. Zlotnik, V.A., Zurbuchen, B.R.: Estimation of hydraulic conductivity from borehole flowmeter tests considering head losses. J. Hydrol. 281, 115–128 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.University of WyomingLaramieUSA

Personalised recommendations