Transport in Porous Media

, Volume 98, Issue 2, pp 239–257 | Cite as

Onset of Double-Diffusive Reaction–Convection in an Anisotropic Rotating Porous Layer

  • S. N. GaikwadEmail author
  • Irfana Begum


The linear and non-linear stability of a rotating double-diffusive reaction–convection in a horizontal anisotropic porous layer subjected to chemical equilibrium on the boundaries is investigated considering a Darcy model that includes the Coriolis term. The effect of Taylor number, mechanical, and thermal anisotropy parameters, reaction rate, solute Rayleigh number, Lewis number, and normalized porosity on the stability of the system is investigated. We find that the Taylor number has a stabilizing effect, chemical reaction may be stabilizing or destabilizing and that the anisotropic parameters have significant influence on the stability criterion. The effect of various parameters on the stationary, oscillatory, and finite-amplitude convection is shown graphically. A weak nonlinear theory based on the truncated representation of Fourier series method is used to find the finite amplitude Rayleigh number and heat and mass transfer.


Double-diffusive convection Rotation Chemical reaction Porous layer Anisotropy Heat mass transfer 

List of Symbols





Height of the porous layer [m]


Gravitational acceleration, (0, 0,-g) [m s\(^{-2}\)]


Inverse anisotropic permeability tensor, \(K_x^{-1} \mathbf{ii}+K_y^{-1} \mathbf{jj}+K_z^{-1} \mathbf{kk}\)


Lumped effective reaction rate


Lewis number, \({\kappa _{\mathrm{T}z} }/{\kappa _\mathrm{S} }\)

\(l, m\)

Horizontal wavenumbers


Nusselt number


Pressure [kg m\(^{-1}\) s\(^{-2}\)]


Velocity vector (u,v,w) [m s\(^{-1}\)]

\(Ra_T \)

Darcy–Rayleigh number, \({\rho _{0} \beta _\mathrm{T} g\Delta TdK_z }/{ \mu \varepsilon \kappa _{\mathrm{T}z} }\)

\(Ra_\mathrm{S} \)

Solute Rayleigh number, \({\rho _{0} \beta _\mathrm{S}g\Delta SdK_z }/{\varepsilon \mu \kappa _{\mathrm{T}z} }\)


Solute concentration

\(S_\mathrm{eq} (T)\)

Equilibrium concentration of the solute at a given temperature


Sherwood number

\(\Delta S\)

Salinity difference between the walls


Time [s]


Temperature [K]


Darcy Taylor number \(({{2\Omega K_z }/\mu })^{2}\)

\(\Delta T\)

Temperature difference between the walls [K]


\(z\) component of vorticity vector \(\mathbf{V}=\nabla \times \mathbf{q} \; [{\text{ m} \text{ s}}^{-1}]\)

\(x, y, z\)

Space coordinates [d]

Greek Symbols

\(\beta _\mathrm{T}\)

Thermal expansion coefficient

\(\beta _\mathrm{S}\)

Solute expansion coefficient

\(\varepsilon \)


\(\varvec{\Omega }\)

Angular velocity [radians s\(^{-1}\)] (\({0,0,\Omega }\))

\(\eta \)

Thermal anisotropy parameter, \({\kappa _{\mathrm{T}x} }/{\kappa _{\mathrm{T}z} }\)

\(\varvec{\kappa }_\mathrm{T}\)

Anisotropic thermal diffusion tensor, \(\kappa _{\mathrm{T}x} \mathbf{ii}+\kappa _{\mathrm{T}y} \mathbf{jj}+\kappa _{\mathrm{T}z} \mathbf{kk}\)

\(\kappa _\mathrm{S} \)

Solute diffusivity

\(\lambda \)

Normalized porosity parameter,\(\varepsilon \frac{({\rho c})_\mathrm{f} }{({\rho c})_\mathrm{m }}\)

\(\chi \)

Damkohler number, \({kd^{2}}/{\varepsilon \kappa _{\mathrm{T}z} }\)

\(\mu \)

Dynamic viscosity [N s m\(^{-2}\)]

\(\nu \)

Kinematic viscosity [m\(^{2}\) s\(^{-1}\)]

\(\rho \)

Density [kg m\(^{-3}\)]

\(\rho c\)

Volumetric heat capacity

\(\sigma \)

Growth rate

\(\xi \)

Mechanical anisotropy parameter, \({K_x }/{K_z }\)

\(\psi \)

Stream function

Other Symbols

\(\nabla _1^2 \)

\(\frac{\partial ^{2}}{\partial x^{2}}+\frac{\partial ^{2}}{\partial y^{2}}\)

\(\nabla ^{2} \)

\(\nabla _1^2 +\frac{\partial ^{2}}{\partial z^{2}}\)



Basic state






Porous medium


Reference value




Imaginary part



Dimensionless quantity

Perturbed quantity


Finite amplitude


Oscillatory state


Stationary state



This study was supported by University Grants Commission, New Delhi, under Maulana Azad National Scholarship to Minority Students and partially under Major Research Project F. No. 37-174/2009 (SR) dated 12-01-2010. One of the authors (Irfana Begum) thanks UGC for awarding the Scholarship. The authors thank the reviewers for their useful suggestions.


  1. Chakrabarti, A., Gupta, A.S.: Nonlinear thermohaline convection in a rotating porous medium. Mech. Res. Commun. 8(1), 9–22 (1981)Google Scholar
  2. Gaikwad, S.N., Malashetty, M.S., Prasad, K.R.: An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect. Appl. Math. Model. 33, 3617 (2009a)CrossRefGoogle Scholar
  3. Gaikwad, S.N., Malashetty, M.S., Prasad, K.R.: Linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with cross diffusion effects. Transp. Porous Media 80, 537 (2009b)CrossRefGoogle Scholar
  4. Gatica, J.E., Viljoen, H.J., Hlavacek, V.: Interaction between chemical reaction and natural convection in porous media. Chem. Eng. Sci. 44(9), 1853 (1989)CrossRefGoogle Scholar
  5. Guo, J., Kaloni, P.N.: Nonlinear stability problem of a rotating doubly diffusive porous layer. J. Math. Anal. Appl. 190, 37–390 (1995)CrossRefGoogle Scholar
  6. Horton, C.W., Rogers, F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)CrossRefGoogle Scholar
  7. Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media. Pergamon Press, Oxford (1998)Google Scholar
  8. Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media, vol. 3. Elsevier, Oxford (2005)Google Scholar
  9. Jupp, T.E., Woods, A.W.: Thermally-driven reaction fronts in porous media. J. Fluid Mech. 484, 329–346 (2003)Google Scholar
  10. Lapwood, E.R.: Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508–521 (1948)CrossRefGoogle Scholar
  11. Lombardo, S., Mulone, G.: Necessary and sufficient conditions of global nonlinear stability for rotating double diffusive convection in a porous medium. Continuum Mech. Thermodyn. 14(16), 527–540 (2002)CrossRefGoogle Scholar
  12. Malashetty, M.S., Bharati, Biradar S.: The onset of double diffusive reaction-convection in an anisotropic porous layer. Phys. Fluids 23, 064102 (2011). doi: 10.1063/1.3598469 CrossRefGoogle Scholar
  13. Malashetty, M.S., Gaikwad, S.N.: Onset of convective instabilities in a binary liquid mixtures with fast chemical reactions in a porous medium. Heat Mass Transf. 39, 415 (2003)Google Scholar
  14. Malashetty, M.S., Heera, R.: The effect of rotation on the onset of double diffusive convection in a horizontal anisotropic porous layer. Transp. Porous Media 74, 105 (2008)CrossRefGoogle Scholar
  15. Malashetty, M.S., Swamy, M.: The onset of convection in a binary fluid saturated anisotropic porous layer. Int. J. Therm. Sci 49, 867 (2010)CrossRefGoogle Scholar
  16. McKibbin, R.: Thermal convection in layered and anisotropic porous media, a review. In: Wooding, R.A., White, I. (eds.) Convective Flows in Porous Media, pp. 113–127. Department of Scientific and Industrial Research, Wellington (1985)Google Scholar
  17. Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)Google Scholar
  18. Phillips, O.M.: Geological Fluid Dynamics. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  19. Pritchard, D., Richardson, C.N.: The effect of temperature-dependent solubility on the onset of thermosolutal convection in a horizontal porous layer. J. Fluid Mech. 9, 571 (2007)Google Scholar
  20. Rudraiah, N., Shivakumara, I.S., Friedrich, R.: The effect of rotation on linear and nonlinear double diffusive convection in a sparsely packed porous medium. Int. J. Heat Mass Transf. 29, 1301–1317 (1986)CrossRefGoogle Scholar
  21. Steinberg, V., Brand, H.: Amplitude equations for the onset of convection in a reactive mixture in a porous medium. J. Chem. Phys. 80(1), 431 (1984)CrossRefGoogle Scholar
  22. Steinberg, V., Brand, H.: Convective instabilities of binary mixtures with fast chemical reaction in a porous medium. J. Chem. Phys. 78(5), 2655 (1983)CrossRefGoogle Scholar
  23. Storesletten, L., et al.: Effects of anisotropy on convection in horizontal and inclined porous layers. In: Ingham, D.B. (ed.) Emerging Technologies and Techniques in Porous Media, pp. 285–306. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  24. Storesletten, L.: Effects of anisotropy on convective flow through porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media, pp. 261–283. Pergamon Press, Oxford (1998)CrossRefGoogle Scholar
  25. Tyvand, P.A.: Thermohaline instability in anisotropic porous media. Water Resour. Res. 16, 325 (1980)CrossRefGoogle Scholar
  26. Vadas, : Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, New York (2008)CrossRefGoogle Scholar
  27. Vafai, : Handbook of Porous Media. Marcel Dekker, New York (2000)CrossRefGoogle Scholar
  28. Vafai, K.: Handbook of Porous Media. Taylor & Francis/CRC Press, London/Boca Raton (2005)CrossRefGoogle Scholar
  29. Viljoen, H.J., Gatica, J.E., Hlavacek, V.: Bifurcation analysis of chemically driven convection. Chem. Eng. Sci. 45(2), 503 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsGulbarga UniversityGulbargaIndia

Personalised recommendations