Skip to main content
Log in

Study of Heat Transport in Bénard-Darcy Convection with g-Jitter and Thermo-Mechanical Anisotropy in Variable Viscosity Liquids

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The effects of temperature-dependent viscosity, gravity modulation and thermo-mechanical anisotropies on heat transport in a low-porosity medium are studied using the Ginzburg–Landau model. The effect of gravity modulation is to decrease the Nusselt number, Nu and variable viscosity leads to increase in Nu. The thermo-mechanical anisotropies have opposite effect on Nu with thermal anisotropy decreasing the heat transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Amplitude of convection

C :

Specific heat capacity

g = (0, 0, −g):

Acceleration due to gravity

k :

Permeability tensor

k :

Wave number

K h, K v :

Permeability in horizontal and vertical direction

Nu :

Nusselt number

p :

Dynamic pressure

q = (u, 0, w):

Velocity vector

Ra :

Darcy-Rayleigh number

T :

Temperature

t :

Time

V :

Variable viscosity parameter

Va :

Darcy–Prandtl number or Vadasz number

(x, z):

Horizontal and vertical coordinates

α :

Coefficient of thermal expansion

γ :

Ratio of heat capacity

δ 0 :

Small parameter indicating variation of viscosity with temperature

δ 1 :

Amplitude of gravity modulation

\({\epsilon = \frac{K_{\rm h}}{K_{\rm v}}}\) :

Ratio of permeabilities in horizontal and vertical direction (mechanical anisotropy parameter)

\({\epsilon_{1}}\) :

Small quantity indicative of weak variation

\({\eta = \frac{\chi_{\rm h}}{\chi_{\rm v}}}\) :

Ratio of conductivities in horizontal and vertical direction (thermal anisotropy parameter)

μ :

Fluid viscosity

ν :

Kinematic viscosity

ρ, ρ 0 :

Fluid density and reference fluid density

χ h, χ v :

Thermometric conductivity in horizontal and vertical direction

ψ :

Stream function

Ω 0 :

Dimensional frequency of gravity modulation

b:

Basic state

f:

Property pertaining to fluid

m:

Property pertaining to porous media

References

  • Bories S.A., Combarnous M.A.: Natural convection in a sloping porous layer. J. Fluid Mech. 57, 63–79 (1973)

    Article  Google Scholar 

  • Cheng P.: Heat transfer in geothermal systems, Advances in heat transfer. Academic Press, New York (1978)

    Google Scholar 

  • Combarnous, M.A.: Natural convection in porous media and geothermal systems. In: Proceedings of 6th international heat transfer conference, vol. 6, Toronto, pp. 45–59 (1978)

  • Elder J.W.: Numerical experiments with free convection in a vertical slot. J. Fluid Mech. 24, 823–843 (1966)

    Article  Google Scholar 

  • Epherre, J.F.: Critère d’apparition de la convection naturalle dans une couche poreuse anisotrope, Rev. Gén. Thermique, 168, 949–950 (1975) (English translation, Int. Chem. Engng. 17, 615–616 (1977))

    Google Scholar 

  • Govender S.: Stability of convection in a gravity modulated porous layer heated from below. Transp. Porous Med. 57(1), 113–123 (2004)

    Article  Google Scholar 

  • Govender S.: Linear stability and convection in a gravity modulated porous layer heated from below-transition from synchronous to subharmonic solutions. Transp. Porous Med. 59(2), 227–238 (2005)

    Article  Google Scholar 

  • Govender S.: Weak non-linear analysis of convection in a gravity modulated porous layer. Transp. Porous Med. 60, 33–42 (2005)

    Article  Google Scholar 

  • Holzbecher, E.: The influence of variable viscosity on thermal convection in porous media. In: International conference on advanced computational methods in heat transfer, pp. 115–124, Cracow, 17–19 June 1998

  • Ingham D.B., Pop I.: Transport phenomena in porous media. Elsevier, Oxford (1998)

    Google Scholar 

  • Kaviany M.: Principles of heat transfer in porous media, 2nd edn. Springer-Verlag, New York (1995)

    Book  Google Scholar 

  • Kuznetsov A.V.: The onset of bioconvection in a suspension of negatively geotactic microorganisms with high–frequency vertical vibration. Int. Comm. Heat Mass Transf. 32, 1119–1127 (2005)

    Article  Google Scholar 

  • Kuznetsov A.V.: Investigation of the onset of bioconvection in a suspension of oxytactic microorganisms subjected to high–frequency vertical vibration. Theor Comput Fluid Dynam 20, 73–87 (2006a)

    Article  Google Scholar 

  • Kuznetsov A.V.: Linear stability analysis of the vertical vibration on bioconvection in a horizontal porous layer of finite depth. J. Porous Med. 9, 597–608 (2006b)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: The effects of combined horizontal and vertical heterogenity on the onset of convection in a porous medium: double diffusive case. Transp. Porous Med. 72, 157–170 (2008)

    Article  Google Scholar 

  • Lapwood E.R.: Convection of a fluid in porous medium. Proc. Camb. Phil. Soc. 44, 508–521 (1948)

    Article  Google Scholar 

  • Malashetty M.S., Basavaraj D.: Rayleigh-Bénard convection subject to time-dependent wall temperature/gravity in a fluid saturated anisotropic porous medium. Heat Mass Transf. 38, 551–563 (2002)

    Article  Google Scholar 

  • Malashetty M.S., Padmavathi V.: Effect of gravity modulation on the onset of convection in a fluid and porous layer. Int. J. Engg. Sci. 35, 829–840 (1997)

    Google Scholar 

  • Malashetty, M.S., Swamy, M.S.: Effect of gravity modulation on the onset of thermal convection in a rotating fluid and porous layer. Phys. Fluids 23 (2011). doi:10.1063/1.3593468

  • Mojtabi, A.: Influence of vibrations on the onset of thermo-convection in porous medium. In: Proceedings of 1st international conference on applications of porous media, Djerba, pp. 704–721 (2002)

  • Nield, D. A., Recent research on convection in a porous medium. Convective flows in porous media. In: Wooding, R.A., White, I. (eds.) Proceedings of a seminar organised by OSIR and CSIRO Institute of Physical Sciences, Wairakei (1984)

  • Nield D.A.: The effect of temperature-dependent viscosity on the onset of convection in a saturated porous medium. ASME J. Heat Transf. 118, 803–805 (1996)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in porous media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Payne L.E., Song J.C., Straughan B.: Continuous dependence and convergence for Brinkman and Forchheimer models with variable viscosity. Proc. R. Soc. Lond. 452, 2173–2190 (1999)

    Google Scholar 

  • Qin Y., Chadam J.: Non-linear convective stability in a porous medium with temperature-dependent viscosity and inertial drag. Stud. Appl. Math. 96, 273–288 (1996)

    Google Scholar 

  • Razi Y.P., Maliwan K., Charrier-Mojtabi M.C., Mojtabi A.: Influence of vibrations on buoyancy induced convection in porous media. In: Vafai, K. (eds) Handbook of Porous Media 2nd edn, pp. 479–488. Taylor and Francis, Newyork (2005)

    Google Scholar 

  • Rees D.A.S., Hossain M.A., Kabir S.: Natural convection of fluid with variable viscosity from a heated vertical wavy surface. ZAMP 53, 48–57 (2002)

    Article  Google Scholar 

  • Richardson L., Straughan B.: Convection with temperature dependent viscosity in a porous medium: non–linear stability and the Brinkman effect. Atti. Accad. Naz. Lincei-Ci-Sci-Fis. Mat. 4, 223–232 (1993)

    Google Scholar 

  • Rudraiah N.: Non-linear convection in a porous medium with convective acceleration and viscous force. Arab. J. Sci. Engg. 92, 153–167 (1984)

    Google Scholar 

  • Rudraiah N., Siddheshwar P.G., Masuoka T.: Nonlinear convection in porous media. J. Porous Med. Rev. 6, 1–32 (2003)

    Article  Google Scholar 

  • Sekhar G.N., Jayalatha G.: Elastic effects on Rayleigh-Bénard convection in liquids with temperature dependent viscosity. Int. J. Ther. Sci. 49, 67–79 (2010)

    Article  Google Scholar 

  • Siddheshwar P.G.: A series solution for the Ginzburg-Landau equation with a time-periodic coefficient. Appl. Math. 3, 542–554 (2010)

    Google Scholar 

  • Siddheshwar P.G., Chan A.T.: Thermorheological effect on Bénard and Marangoni convections in anisotropic porous media. In: Cheng, L., Yeow, K. (eds) Hydrodynamics VI Theory and Applications, pp. 471–476. Taylor and Francis, London (2004)

    Google Scholar 

  • Siddheshwar P.G., Shekhar G.N., Jayalatha G.: Effect of time-periodic oscillations of the Rayleigh–Bénard system on non-linear convection in viscoelastic liquids. J. non-Newt. Fluid. Mech. 165, 1412–1418 (2010)

    Article  Google Scholar 

  • Sivakumar T., Saravanan S.: Effect of gravity modulation on the onset of convection in a horizontal anisotropic porous layer. AIP. Conf. Proc. 1146, 472–478 (2009). doi:10.1063/1.3183566

    Article  Google Scholar 

  • Vafai K.: Hand book of porous media. Marcel Dekker, Inc., New York (2000)

    Book  Google Scholar 

  • Vanishree R.K.: Combined effect of temperature and gravity modulations on the onset of convection in an anisotropic porous medium. Int. J. Appl. Mech. Engg. 15(1), 267–291 (2010)

    Google Scholar 

  • Vanishree R.K., Siddheshwar P.G.: Effect of rotation on thermal convection in an anisotropic porous medium with temperature-dependent viscosity. Transp. Porous Med. 81, 73–87 (2010)

    Article  Google Scholar 

  • Venezian G.: Effect of modulation on the onset of convection. J. Fluid Mech. 35, 243–254 (1969)

    Article  Google Scholar 

  • Wu X.Z., Libchaber A.: Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43, 2833–2839 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Vanishree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddheshwar, P.G., Vanishree, R.K. & Melson, A.C. Study of Heat Transport in Bénard-Darcy Convection with g-Jitter and Thermo-Mechanical Anisotropy in Variable Viscosity Liquids. Transp Porous Med 92, 277–288 (2012). https://doi.org/10.1007/s11242-011-9901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9901-z

Keywords

Navigation