Skip to main content
Log in

Onset of Thermal Convection in a Maxwell Fluid-Saturated Porous Medium: The Effects of Hydrodynamic Boundary and Constant Flux Heating Conditions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Based on a modified Darcy–Brinkman–Maxwell model, a linear stability analysis of a Maxwell fluid in a horizontal porous layer heated from below by a constant flux is carried out. The non-oscillatory instability and oscillatory instability with different hydrodynamic boundaries such as rigid and free surfaces at the bottom are studied. Compared with the rigid surface cases, onset of fluid motion due to non-oscillatory instability and oscillatory instability is found to occur both more easily for the system with a free bottom surface. The critical Rayleigh number for onset of fluid motion due to non-oscillatory instability is lower with a constant flux heating bottom than with an isothermal heating bottom, but the result due to oscillatory instability is in contrast. The effects of the Darcy number, the relaxation time, and the Prandtl number on the critical Rayleigh number are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Awad F., Sibanda P., Motsa S.S.: On the linear stability analysis of a Maxwell fluid with double-diffusive convection. Appl. Math. Model. 34(11), 3509–3517 (2010)

    Article  Google Scholar 

  • Banu N., Rees D.A.S.: Onset of Darcy–Benard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45(11), 2221–2228 (2002)

    Article  Google Scholar 

  • Bejan A.: Simple methods for convection in porous media: scale analysis and the intersection of asymptotes. Int. J. Energy Res. 27(10), 859–874 (2003)

    Article  Google Scholar 

  • Bénard H.: Les tourbillons cellulaires dans une nappe liquide. Revue Gen. Sci. Pur. Appl. 11, 1261 (1900)

    Google Scholar 

  • Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Clarendon, Oxford (1961)

    Google Scholar 

  • Chen F., Chen C.F.: Onset of finger convection in a horizontal porous layer underlying a fluid layer. J. Heat Transf. 110(2), 403–409 (1988)

    Article  Google Scholar 

  • Cherkaoui A., Wilcock W.: Characteristics of high Rayleigh number two-dimensional convection in an open-top porous layer heated from below. J. Fluid Mech. 394, 241–260 (1999)

    Article  Google Scholar 

  • Drazin P., Reid W.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  • Green T.: Oscillating convection in an elasticoviscous liquid. Phys. Fluids 11(7), 1410–1412 (1968)

    Article  Google Scholar 

  • Horton C., Rogers F.: Convection currents in a porous medium. J. Appl. Phys. 16(6), 367–370 (1945)

    Article  Google Scholar 

  • Hurle D.T.J., Jakeman E., Pike E.R.: On the solution of the Benard problem with boundaries of finite conductivity. Proc. R Soc. Lond. Ser. A 296(1447), 469–475 (1967)

    Article  Google Scholar 

  • Jakeman E.: Convective instability in fluids of high thermal diffusivity. Phys. Fluids 11(1), 10–14 (1968)

    Article  Google Scholar 

  • Jeffreys H.: The stability of a layer of fluid heated below. Philos. Mag. Ser. 7(2), 833 (1926)

    Google Scholar 

  • Jeffreys H.: Some cases of instability in fluid motion. Proc. R Soc. Lond. Ser. A 118(779), 195–208 (1928)

    Article  Google Scholar 

  • Katto Y., Masuoka T.: Criterion for the onset of convective flow in a fluid in a porous medium. Int. J. Heat Mass Transf. 10(3), 297–309 (1967)

    Article  Google Scholar 

  • Khaled A.R.A., Vafai K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46(26), 4989–5003 (2003)

    Article  Google Scholar 

  • Kim M.C., Lee S.B., Kim S., Chung B.J.: Thermal instability of viscoelastic fluids in porous media. Int. J. Heat Mass Transf. 46(26), 5065–5072 (2003)

    Article  Google Scholar 

  • Kolkka R.W., Ierley G.R.: On the convected linear stability of a viscoelastic Oldroyd B fluid heated from below. J. Non Newton Fluid Mech. 25(2), 209–237 (1987)

    Article  Google Scholar 

  • Kubitschek J.P., Weidman P.D.: Stability of a fluid-saturated porous medium heated from below by forced convection. Int. J. Heat Mass Transf. 46(19), 3697–3705 (2003)

    Article  Google Scholar 

  • Lapwood E.R.: Convection of a fluid in a porous medium. Math. Proc. Camb. Philos. Soc. 44(04), 508–521 (1948)

    Article  Google Scholar 

  • Malashetty M., Kulkarni S.: The convective instability of Maxwell fluid-saturated porous layer using a thermal non-equilibrium model. J. Non Newton Fluid Mech. 162(1-3), 29–37 (2009)

    Article  Google Scholar 

  • Nield D., Bejan A.: Convection in Porous Media, 3rd edn. Springer, Berlin (2006)

    Google Scholar 

  • Rayleigh L.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. Ser. 6 32, 529–546 (1916)

    Article  Google Scholar 

  • Reid W., Harris D.: Some further result on the Benard problem. Phys. Fluids 1(2), 102–110 (1958)

    Article  Google Scholar 

  • Rosenblat S.: Thermal convection in a viscoelastic liquid. J. Non Newton Fluid Mech. 21(2), 201–223 (1986)

    Article  Google Scholar 

  • Shivakumara I., Nanjundappa C., Chavaraddi K.: Darcy–Bénard–Marangoni convection in porous media. Int. J. Heat Mass Transf. 52(11–12), 2815–2823 (2009)

    Article  Google Scholar 

  • Sokolov M., Tanner R.I.: Convective stability of a general viscoelastic fluid heated from below. Phys. Fluids 15(4), 534–539 (1972)

    Article  Google Scholar 

  • Sparrow E.M., Goldstein R.J., Jonsson V.K.: Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18(04), 513–528 (1964)

    Article  Google Scholar 

  • Tan W., Masuoka T.: Stability analysis of a Maxwell fluid in a porous medium heated from below. Phys. Lett. A 360(3), 454–460 (2007)

    Article  Google Scholar 

  • Vafai K., Tien C.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24(2), 195–203 (1981)

    Article  Google Scholar 

  • Vest C.M., Arpaci V.S.: Overstability of a viscoelastic fluid layer heated from below. J. Fluid Mech. 36(03), 613–623 (1969)

    Article  Google Scholar 

  • Wang C.Y.: Onset of convection in a fluid-saturated rectangular box, bottom heated by constant flux. Phys. Fluids 11(6), 1673–1675 (1999)

    Article  Google Scholar 

  • Wang C.Y.: Convective stability in a rectangular box of fluid-saturated porous medium with constant pressure top and constant flux bottom heating. Transp. Porous Media 46(1), 37–42 (2002)

    Article  Google Scholar 

  • Wang S., Tan W.: Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below. Phys. Lett. A 372(17), 3046–3050 (2008)

    Article  Google Scholar 

  • Wang S., Tan W.: Stability analysis of soret-driven double-diffusive convection of Maxwell fluid in a porous medium. Int. J. Heat Fluid Flow 32(1), 88–94 (2011)

    Article  Google Scholar 

  • Zhang Z., Fu C., Tan W., Wang C.Y.: Onset of oscillatory convection in a porous cylinder saturated with a viscoelastic fluid. Phys. Fluids 19(9), 098104 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchang Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, C., Fu, C. & Tan, W. Onset of Thermal Convection in a Maxwell Fluid-Saturated Porous Medium: The Effects of Hydrodynamic Boundary and Constant Flux Heating Conditions. Transp Porous Med 91, 777–790 (2012). https://doi.org/10.1007/s11242-011-9872-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9872-0

Keywords

Navigation