Skip to main content
Log in

The Effect of Conducting Boundaries on Weakly Nonlinear Darcy–Bénard Convection

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We consider convection in a uniform fluid-saturated porous layer which is bounded by conducting plates and heated from below. The primary aim is to determine the identity of the postcritical convection planform as a function of the thicknesses and conductivities of the bounding plates relative to that of the porous layer. This work complements and extends an early paper by Riahi (J Fluid Mech 129:153–171, 1983) who considered a situation where the porous layer is bounded by infinitely thick conducting media. We present regions in parameter space wherein convection in the form of rolls is unstable and within which cells with square planform form the preferred pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({{\mathcal A}}\) :

Arbitrary constant

A, B, C:

Roll amplitudes

c1, c2, c3:

Constants in amplitude equations

c.c.:

Complex conjugate

C :

Heat capacity

d :

Conductivity ratio

f, g:

Functions in weakly nonlinear theory

\({\mathcal F}\) :

Dispersion relation

\({{\bar g}}\) :

Gravity

h :

Height of sublayer

k :

Disturbance wavenumber

K :

Permeability

p :

Pressure

Ra :

Darcy–Rayleigh number

t :

Time

T :

Dimensional temperature

u, v:

Horizontal velocities

w :

Vertical velocity

x, y:

Horizontal coordinates

z :

Vertical coordinate

α :

Disturbance wavenumber

β :

Expansion coefficient

γ :

Equal to d

δ :

Sublayer thickness ratio

ΔT :

Reference temperature drop

\({\epsilon}\) :

Small quantity

θ :

Temperature

Θ:

Disturbance temperature

κ :

Thermal diffusivity ratio

λ :

Function of Ra and α

μ :

Dynamic viscosity

ρ :

Density

σ :

Function of Ra and α

τ :

Slow time scale

\({\phi}\) :

Relative orientation of two rolls

Ω :

Coupling coefficient

c:

Critical conditions

f:

Fluid

m :

Iteration number

ref:

Reference value

1, 2, 3, …:

Context-dependent meanings

\({\hat {}}\) :

Dimensional quantity

\({\bar {}}\) :

Reduced disturbance

′:

Derivative with respect to z

References

  • Genç, G., Rees, D.A.S.: Onset of convection in horizontally partitioned porous layers. Phys. Fluids (2011)

  • Horton C.W., Rogers F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)

    Article  Google Scholar 

  • Lapwood E.R.: Convection of a fluid in a porous medium. Proc. Camb. Philos. Soc. 44, 508–521 (1948)

    Article  Google Scholar 

  • Masuoka T., Katsuhara T., Nakazono Y., Isozaki S.: Onset of convection and flow patterns in a porous layer of two different media. Heat Transf. Japan. Res. 7, 39–52 (1979)

    Google Scholar 

  • McKibbin R., O’Sullivan M.J.: Onset of convection in a layered porous medium heated from below. J. Fluid Mech. 96, 375–393 (1980)

    Article  Google Scholar 

  • McKibbin R., O’Sullivan M.J.: Heat transfer in a layered porous medium heated from below. J. Fluid Mech. 111, 141–173 (1981)

    Article  Google Scholar 

  • McKibbin R., Tyvand P.A.: Thermal convection in a porous medium composed of alternating thick and thin layers. Int. J. Heat Mass Transf. 26, 761–780 (1983)

    Article  Google Scholar 

  • Mojtabi A., Rees D.A.S.: The effect of conducting bounding plates on the onset of Horton-Rogers-Lapwood convection. Int. J. Heat Mass Transf. 54(3), 293–301 (2011)

    Article  Google Scholar 

  • Newell A.C., Whitehead J.A.: Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279–303 (1969)

    Article  Google Scholar 

  • Nguyen-Quang T., Guichard F., Nguyen T.H.: Spatial pattern formation of motile microorganisms: from gravititactic bioconvection to protozoan culture dynamics. In: Vafai, K. (eds) Porous Media: Applications Biological Systems and Technology, pp. 535–567. CRC Press, Boca Raton (2010)

    Chapter  Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Pop I., Ingham D.B.: Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)

    Google Scholar 

  • Postelnicu, A.P.: Thermal stability of two fluid porous layers separated by a thermal barrier. In: Proceedings of the 3rd Baltic Heat Transfer Conference, Gdansk, Poland, pp. 443–450 (1999)

  • Rana R., Horne R.N., Cheng P.: Natural convection in a multi-layered geothermal reservoir. ASME J. Heat Transf. 101, 411–416 (1979)

    Article  Google Scholar 

  • Rees D.A.S.: The stability of Darcy–Bénard convection. In: Vafai, K. (eds) Handbook of Porous Media, pp. 521–558. Marcel Dekker, New York (2000)

    Chapter  Google Scholar 

  • Rees, D.A.S.: Stability analysis of Darcy-Bénard convection. In: Lecture notes for the Summer School on Porous Medium Flows, Neptun, Constanţa, Romania, 25–29 June 2001

  • Rees, D.A.S., Genç, G.: The onset of convection in porous layers with multiple horizontal partitions. Int. J. Heat Mass Transf. (2011) (to appear)

  • Rees D.A.S., Riley D.S.: The effects of boundary imperfections on convection in a saturated porous layer: non-resonant wavelength excitation. Proc. R. Soc. Lond. A 421, 303–339 (1989a)

    Article  Google Scholar 

  • Rees D.A.S., Riley D.S.: The effects of boundary imperfections on convection in a saturated porous layer: near-resonant wavelength excitation. J. Fluid Mech. 199, 133–154 (1989b)

    Article  Google Scholar 

  • Rees D.A.S., Riley D.S.: The three-dimensional stability of finite-amplitude convection in a layered porous medium heated from below. J. Fluid Mech. 211, 437–461 (1990)

    Article  Google Scholar 

  • Rees D.A.S., Selim A., Ennis-King J.P.: The instability of unsteady boundary layers in porous media. In: Vadász, P. (eds) Emerging Topics in Heat and Mass Transfer in Porous Media, pp. 85–110. Springer, New York (2008)

    Chapter  Google Scholar 

  • Riahi N.: Nonlinear convection in a porous layer with finite conducting boundaries. J. Fluid Mech. 129, 153–171 (1983)

    Article  Google Scholar 

  • Tyvand P.A.: Onset of Rayleigh-Bénard convection in porous bodies. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media II, pp. 82–112. Elsevier, New York (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Andrew S. Rees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rees, D.A.S., Mojtabi, A. The Effect of Conducting Boundaries on Weakly Nonlinear Darcy–Bénard Convection. Transp Porous Med 88, 45–63 (2011). https://doi.org/10.1007/s11242-011-9722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9722-0

Keywords

Navigation