Skip to main content
Log in

Solutions to and Validation of Matrix-Diffusion Models

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A model transport system is considered in which a pulse of tracer molecules is advected along a flow channel with porous walls. The advected tracer thus undergoes diffusion, matrix-diffusion, inside the walls, which affects the breakthrough curve of the tracer. Analytical solutions in the form of series expansions are derived for a number of situations which include a finite depth of the porous matrix, varying aperture of the flow channel, and longitudinal diffusion and Taylor dispersion of the tracer in the flow channel. Novel expansions for the Laplace transforms of the concentration in the channel facilitated closed-form expressions for the solutions. A rigorous result is also derived for the asymptotic form of the breakthrough curve for a finite depth of the porous matrix, which is very different from that for an infinite matrix. A specific experimental system was created for validation of matrix-diffusion modeling for a matrix of finite depth. A previously reported fracture-column experiment was also modeled. In both cases model solutions gave excellent fits to the measured breakthrough curves with very consistent values for the diffusion coefficients used as the fitting parameters. The matrix-diffusion modeling performed could thereby be validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aris R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 235, 67–77 (1956)

    Article  Google Scholar 

  • Bodin, J., Delay, F., de Marsily, G.: Solute transport in a single fracture with negligible matrix permeability: 1. Fundamental mechanisms. Hydrogeol. J. 11, 418–433 (2003). Solute transport in a single fracture with negligible matrix permeability: 2. Mathematical formalism. Ibid. 434–454

  • Buckley R.L., Loyalka S.K.: Numerical studies of solute transport in a fracture surrounded by rock matrix: effect of lateral diffusion and chemical reactions on the overall dispersion. Ann. Nucl. Energy 21(8), 461–494 (1994)

    Article  Google Scholar 

  • Chatwin P.C., Sullivan P.J.: The effect of aspect ratio on longitudinal diffusivity in rectangular channels. J. Fluid Mech. 120, 347–358 (1982)

    Article  Google Scholar 

  • Chittaranjan R., Ellsworth T.R., Valocchi A.J., Boast C.W.: An improved dual porosity model for chemical transport in macroporous soils. J. Hydrol. 193(1–4), 270–293 (1997)

    Google Scholar 

  • Cvetkovic V., Selroos J.-O., Cheng H.: Transport of reactive tracers in rock fractures. J. Fluid Mech. 378, 335–356 (1999)

    Article  Google Scholar 

  • Cvetkovic V., Cheng H., Widestrand H., Byegård J., Winberg A., Andersson P.: Sorbing tracer experiments in a crystalline rock fracture at Äspö (Sweden): 2. Transport model and effective parameter estimation. Water Resour. Res. 43, W11421 (2007)

    Article  Google Scholar 

  • Delay F., Kaczmaryk A., Ackerer P.: Inversion of a Lagrangian time domain random walk (TDRW) approach to one-dimensional transport by derivation of the analytical sensitivities to parameters. Adv. Water Resour. 31(3), 484–502 (2008)

    Article  Google Scholar 

  • Doughty C.: Investigation of conceptual and numerical approaches for evaluating moisture, gas, chemical, and heat transport in fractured unsaturated rock. J. Contam. Hydrol. 38(1–3), 69–106 (1999)

    Article  Google Scholar 

  • Foster S.S.D.: The chalk groundwater tritium anomaly—a possible explanation. J. Hydrol. 25(1–2), 159–165 (1975)

    Article  Google Scholar 

  • Guimera J., Carrera J.: A comparison of hydraulic and transport parameters measured in low-permeability fractured media. J. Contam. Hydrol. 41(3–4), 261–281 (2000)

    Article  Google Scholar 

  • Hadermann J., Heer W.: The Grimsel (Switzerland) migration experiment: integrating field experiments, laboratory investigations and modelling. J. Contam. Hydrol. 21(1–4), 87–100 (1996)

    Article  Google Scholar 

  • Hodgkinson D., Benabderrahmane H., Elert M., Hautojärvi A., Selroos J., Tanaka Y., Uchida M.: An overview of Task 6 of the Äspö Task force: modelling groundwater and solute transport: improved understanding of radionuclide transport in fractured rock. Hydrogeol. J. 17(5), 1035–1049 (2009)

    Article  Google Scholar 

  • Hölttä, P.: Radionuclide migration in crystalline rock fractures, PhD Thesis, University of Helsinki (1992)

  • Hölttä P., Hautojärvi A., Hakanen M.: Transport and retardation on non-sorbing radionuclides in crystalline rock fractures. Radiochim. Acta 58/59, 285–290 (1992)

    Google Scholar 

  • Kennedy C.A., Lennox W.: A control volume model of solute transport in a single fracture. Water Resour. Res. 31(2), 313–322 (1995)

    Article  Google Scholar 

  • Korevaar J.: Tauberian Theory, a Century of Developments. Springer, Berlin (2004)

    Google Scholar 

  • Lobo V.M.M., Ribeiro A.C.F., Verissimo L.M.P.: Diffusion coefficients in aqueous solutions on potassium chloride at high and low concentrations. J. Mol. Liq. 78, 139–149 (1998)

    Article  Google Scholar 

  • Małoszewski, P., Zuber, A.: Interpretation of artificial and environmental tracers in fissured rocks with a porous matrix. In: Isotope Hydrology 1983. Int. At. Energy Agency (I.A.E.A.), Vienna, pp. 635–651 (1983)

  • Mills R.: Self-diffusion in normal and heavy water in the range 1–45°. J. Phys. Chem. 77(5), 685–688 (1973)

    Article  Google Scholar 

  • Neretnieks I.: Diffusion in the rock matrix: an important factor in radionuclide retardation?. J. Geophys. Res. 85(B8), 4379–4397 (1980)

    Article  Google Scholar 

  • Neretnieks I.: A stochastic multi-channel model for solute transport: analysis of tracer tests in fractured rock. J. Contam. Hydrol. 55(3–4), 175–211 (2002)

    Article  Google Scholar 

  • Norton D., Knapp R.: Transport phenomena in hydrothermal systems: the nature of porosity. Am. J. Sci. 277, 913–936 (1977)

    Article  Google Scholar 

  • Painter S., Cvetkovic V., Mancillas J., Pensado O.: Time domain particle tracking methods for simulating transport with retention and first-order transformation. Water Resour. Res. 44, W01406 (2008)

    Article  Google Scholar 

  • Perez N.: Electrochemistry and Corrosion Science. Kluwer Academic Publishers, Boston (2004)

    Book  Google Scholar 

  • Ryan D., Carbonell R.G., Whitaker S.: Effective diffusivities for catalyst pellets under reactive conditions. Che. Eng. Sci. 35(1–2), 10–16 (1980)

    Article  Google Scholar 

  • Sahimi M.: Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65(4), 1393–1534 (1993)

    Article  Google Scholar 

  • Shapiro A.M.: Effective matrix diffusion in kilometer-scale transport in fractured crystalline rock. Water Resour. Res. 37(3), 507–522 (2001)

    Article  Google Scholar 

  • Siitari-Kauppi M., Lindberg A., Hellmuth K.-H., Timonen J., Väätäinen K., Hartikainen J., Hartikainen K.: The effect of microscale pore structure on matrix diffusion—a site specific study of tonalite. J. Contam. Hydrol. 26(1–4), 147–158 (1997)

    Article  Google Scholar 

  • Skagius K., Neretnieks I.: Porosities and diffusivities of some nonsorbing species in crystalline rocks. Water Resour. Res. 22(3), 389–398 (1986)

    Article  Google Scholar 

  • Tang A., Sandall O.C.: Diffusion coefficient of chlorine in water at 25–65° C. J. Chem. Eng. Data 30, 189–191 (1985)

    Article  Google Scholar 

  • Tang D.H., Frind E.O., Sudicky E.A.: Contaminant transport in fractured porous media: analytical solutions for a single fracture. Water Resour. Res. 17(3), 555–564 (1981)

    Article  Google Scholar 

  • Taylor G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 219, 186–203 (1953)

    Article  Google Scholar 

  • Voutilainen M., Kekäläinen P., Hautojärvi A., Timonen J.: Validation of matrix diffusion modeling. Phys. Chem. Earth 35(6–8), 259–264 (2010)

    Google Scholar 

  • Webster D.R., Felton D.S., Luo J.: Effective macroscopic transport parameters between parallel plates with constant concentration boundaries. Adv. Water Resour. 30, 1993–2001 (2007)

    Article  Google Scholar 

  • Wood W.W., Kraemer T.F., Hearn P.P.: Intergranular diffusion: an important mechanism influencing solute transport in classic aquifers?. Science 247, 1569–1572 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Kekäläinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kekäläinen, P., Voutilainen, M., Poteri, A. et al. Solutions to and Validation of Matrix-Diffusion Models. Transp Porous Med 87, 125–149 (2011). https://doi.org/10.1007/s11242-010-9672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9672-y

Keywords

Navigation