Skip to main content
Log in

Revisiting the Drainage Relative Permeability Measurement by Centrifuge Method Using a Forward–backward Modeling Scheme

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Measurement of drainage relative permeability by the centrifuge method was first introduced by Hagoort (SPE J. 29(3):139–150, 1980). It has been shown that capillary end effects can cause error in the measurement of relative permeability if a minimum rotational speed is not honoured. To determine the minimum rotational speed that makes the capillary end effect negligible, ω min, we propose that the value of capillary-gravity number, N cg, should be of the order of 10−2 or smaller. This conclusion is based on the use a Forward–backward scheme consisting of a forward numerical simulator developed for centrifuge experiments and applying Hagoort’s method as a backward model. The article presents the use of this Forward–backward scheme as a powerful tool for error analysis such as determining the impact of capillary end effects. By using this loop, we first determine ω min for specific core and fluid properties. Later, we generalize the ω min calculations by using the definition of N cg as a “rule of thumb” for designing relative permeability experiments by centrifuge method. We also demonstrate another use of this loop for controlling the quality of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

g c :

Average centrifugal acceleration [LT−2]

k rw :

Relative permeability of the wetting phase, fraction

\({k^\prime_{\rm rw}}\) :

Derivative of the wetting phase relative permeability, fraction

k rwD :

Relative permeability of the wetting phase, normalized

\({k_{\rm rw}^o }\) :

End point value of the wetting phase relative permeability, fraction

L :

Length of the core sample [L]

n :

Corey exponent, dimensionless

n :

Number of data points in error calculations

N B :

Bond number, dimensionless

N cg :

Capillary-gravity number, dimensionless

N p :

Pore volume cumulative production, dimensionless

P c :

Capillary pressure [ML−1T−2]

P cth :

Threshold capillary pressure [ML−1T−2]

P cD :

Capillary pressure, dimensionless

r m :

Distance of center of the rotation to middle of the core [L]

r o :

Distance of center of the rotation to the core inlet [L]

S wD :

Wetting phase saturation, normalized

S wDe :

Wetting phase saturation at core exit, normalized

t :

Time [T]

t D :

Time, dimensionless

x :

Length in x-direction [L]

x D :

Length in x-direction, dimensionless

β(t):

Time function of the rotational speed, dimensionless

\({\phi}\) :

Porosity, fraction

Δρ :

Density difference [ML−3]

ω :

Rotational speed (rpm)

ω 1 :

Initial rotational speed (rpm)

ω min :

Required rotational speed in relative permeability experiments (rpm)

μ w :

Wetting phase viscosity [ML−1T−1]

σ :

Surface tension [MT−2]

N B :

 = kΔρω 2 r m/σ

N cg :

\({=\dfrac{P_{\rm cth}}{\Delta \rho gL},N_{\rm cg} =\dfrac{P_{\rm cth}}{\Delta \rho \omega^{2}r_{\rm m} L}}\)

S wD :

\({=\dfrac{S_{\rm w} -S_{\rm wir}}{1-S_{\rm wir} -S_{\rm gc}}}\)

t D :

\({=\left( {\dfrac{kk_{\rm rw}^o}{{\rm \mu}_w}\Delta \rho \omega_{1}^{2} r_o}\right)\dfrac{t}{L\phi \left( {1-S_{\rm wir} -S_{\rm gc}}\right)}}\)

β (t ):

\({=\,\left\{ \begin{array}{l@{\quad}l} 0 & {\rm t} < 0 \\ 1 & 0\leq {\rm t} \leq {\rm t}_1 \\ \left(\frac{\omega_j}{\omega_1} \right)^{2} & {\rm t}_{j-1} \leq {\rm t} \leq {\rm t}_{\rm j} \end{array} \right.}\)

P cD :

\({=\dfrac{P_c}{P_{\rm cth}}}\)

k rwD :

\({=\dfrac{k_{\rm rw}}{k_{\rm rw}^o}}\)

x D :

\({=\dfrac{x}{L}}\)

References

  • Cardwell W.T., Parsons R.L.: Gravity drainage theory. Pet. Trans. AIME 179, 199–215 (1949)

    Google Scholar 

  • Christiansen R.L.: Two phase flow through porous media. Colorado School of Mines, Golden (2001)

    Google Scholar 

  • Correa A., Firoozabadi A.: Concept of gravity drainage in layered porous media. SPE J. 1(10), 101–111 (1996). doi:10.2118/26299-PA

    Google Scholar 

  • Ding, M., Torsæter, O., Jelmert, T.A.: Developments in centrifuge measurements of relative permeability and capillary pressure hysteresis. Society of Core Analysts, SCA-9943 (1999)

  • Dombrowski H.S., Brownell L.E.: Residual equilibrium saturation of porous media. Ind. Eng. Chem. 46, 1207–1219 (1954)

    Article  Google Scholar 

  • Dykstra, H.: The prediction of oil recovery by gravity drainage. J. Pet. Technol. 818–830 (1978). doi:10.2118/6548-PA

  • Firoozabadi, A., Aziz, K.: Relative permeability from centrifuge data. Paper 15059 presented at SPE California Regional Meeting, Oakland, 2–4 April (1986). doi:10.2118/15059-MS

  • Guo, Y.: Centrifuge experiment and relative permeability. Ph.D. dissertation, University of Trondheim (1998)

  • Hagoort J.: Oil recovery by gravity drainage. SPE J. 20(3), 139–150 (1980). doi:10.2118/7424-PA

    Google Scholar 

  • Hassler G.L., Brunner E.: Measurement of capillary pressure in small core samples. Trans. AIME 160, 114–123 (1945)

    Google Scholar 

  • Haung D.D., Honarpour M.M.: Capillary end effects in coreflood experiments. J. Pet. Sci. Eng. 19, 103–117 (1998). doi:10.1016/S0920-4105(97)00040-5

    Article  Google Scholar 

  • Hirasaki, G.J., Rohan, J.A., Dudley, J.W.: Modification of centrifuge and software for determination of relative permeability curves. Paper 25290 presented at SPE annual technical conference and exhibition, August (1992)

  • Morrow N.R., Chatzis I.: Correlation of capillary number relationships for sandstone. SPE J. 24(5), 555–562 (1984). doi:10.2118/10114-PA

    Google Scholar 

  • O’Meara, D.J., Crump, J.G.: Measuring capillary pressure and relative permeability in a single centrifuge experiment. Paper 14419 presented at the SPE annual technical conference, Las Vegas, 22–25 September (1985). doi:10.2118/14419-MS

  • Saeedi, M.: Modeling and experiments of drainage relative permeability and capillary pressure functions using a centrifuge. M.Sc. Dissertation, University of Calgary (2007)

  • Saidi A.M.: Reservoir Engineering of Fractured Reservoirs, pp. 92. Total Edition Press, Paris (1987)

    Google Scholar 

  • Singh M., Mani V., Honarpour M.M., Mohanty K.K.: Comparison of viscous and gravity dominated gas-oil relative permeabilities. J. Pet. Sci. Eng. 30, 67–81 (2001). doi:10.1016/S0920-4105(01)00101-2

    Article  Google Scholar 

  • Skauge, A., Poulsen, S.: Rate effects on centrifuge drainage relative permeability. Paper 63145 presented at SPE annual technical conference and exhibition, Dallas, 1–4 October (2000). doi:10.2118/63145-MS

  • van den Berg E.H., Perfect E., Tu C., Knappett P.S.K., Leao T.P., Donat R.W.: Unsaturated hydraulic conductivity measurements with centrifuges: a review. Vadose Zone J. 8(3), 531–547 (2009). doi:10.2136/vzj2008.0119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Pooladi-Darvish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeedi, M., Pooladi-Darvish, M. Revisiting the Drainage Relative Permeability Measurement by Centrifuge Method Using a Forward–backward Modeling Scheme. Transp Porous Med 86, 49–71 (2011). https://doi.org/10.1007/s11242-010-9605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9605-9

Keywords

Navigation