Skip to main content
Log in

An Analytical Solution for Capillary Gravity Drainage with Dominant Viscous Forces

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The development of the capillary fringe during gravity drainage has a significant influence on saturation and pressure distributions in porous formations (Sarkarfarshi et al. in Int J Greenh Gas Control 23:61–71, 2014). This paper introduces an analytical solution for gravity drainage in an axisymmetric geometry with significant capillary pressure. The drainage process results from the injection of a lighter and less viscous injectant into a porous medium saturated with a heavier and more viscous pore fluid. If the viscous force dominates the capillary and the buoyancy forces, then the flow regime is approximated by differential equations and the admissible solution comprises a front shock wave and a trailing simple wave. In contrast to existing analytical solutions for capillary gravity drainage problems (e.g., Nordbotten and Dahle in 47(2) 2011; Golding et al. in J Fluid Mech 678:248–270 2011), this solution targets the saturation distribution during injection at an earlier point in time. Another contribution of this analytical solution is the incorporation of a completely drained flow regime close to the injection well. The analytical solution demonstrates the strong dependency of the saturation distribution upon relative permeability functions, gas entry capillary pressure, and residual saturation. The analytical results are compared to results from a commercial reservoir engineering software package (\(\hbox {CMG } \hbox {STARS}^{\mathrm{TM}}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(\mathbf{u}_\mathrm{w}\), \(\mathbf{u}_\mathrm{n}\) (m/s):

Velocity of wetting and non-wetting

S :

Saturation of wetting

\(S_\mathrm{r}\) :

Residual saturation of wetting

\(S^{b}\) :

Saturation of top the transition zone (See Fig. 1)

\(S_\mathrm{c}\) :

Top saturation of the front

\(S_\mathrm{top}\) :

Saturation of top of the reservoir

\(S_\mathrm{ave}\) :

Vertical average saturation

\(\gamma _\mathrm{w}\), \(\gamma _\mathrm{n}\) (Pa/m):

Unit weight of wetting and non-wetting

\(Q_\mathrm{o}\,(\hbox {m}^{2}/\hbox {s})\) :

Volumetric rate of injection per unit meter of preformation

r (m), \(\xi \) :

Actual and normalized radius

z (m), \(\zeta \) :

Actual and normalized depth

t (s), \(\tau \) :

Actual and normalized time

\(r_\mathrm{w}\) (m), \(\xi _\mathrm{w}\) :

Actual and normalized well radius

B (m):

Thickness of reservoir

b :

Normalized thickness of the fully drained zone

R (m):

Characteristic length of aquifer radius

\(P_\mathrm{c}\) (Pa), \(P^{*}_\mathrm{c}\) :

Actual and normalized capillary pressure

\(k_\mathrm{rw}\), \(k_\mathrm{rn}\) :

Relative permeability functions

\(\mu _\mathrm{w}\) (Pa s), \(\mu _\mathrm{n}\)(Pa s):

Wetting and non-wetting viscosity

c :

Ratio of wetting viscosity to non-wetting viscosity

A (kPa):

Maximum capillary pressure

\(\varphi \) :

Porosity

\(\varepsilon \) :

Ratio of capillary to viscous force

\(K\,(\hbox {m}^{2})\) :

Intrinsic permeability

References

  • Barenblatt, G., Entov, V., Ryzhik, M.: Theory of Fluids Flow Through Natural Rock. Kluwer Academic Publisher, Berlin (1990)

    Book  Google Scholar 

  • Bennion, B., Bachu, S.: Relative permeability characteristics for supercritical CO\(_2\) displacing water in a variety of potential sequestration zones in the western Canada sedimentary basin. In: SPE Annual Technical Conference and Exhibition, Dallas (2005)

  • Court, B., Bandilla, K.W., Celia, M.A., Janzen, A., Dobossy, M., Nordbotten, J.M.: Applicability of vertical-equilibrium and sharp-interface assumptions in CO\(_2\) sequestration modeling. Int. J. Greenh. Gas Control. 10, 134–147 (2012)

    Article  Google Scholar 

  • Dake, L.P.: Fundamentals of Reservoir Engineering. Elsevier, Amsterdam (1983)

    Google Scholar 

  • Dentz, M., Tartakovsky, D.: Abrupt-interface solution for carbon dioxide injection into porous media. Transp. Porous Media 79, 15–27 (2008)

    Article  Google Scholar 

  • Dusseault, M., Malekzadeh, F.: Sequestration of greenhouse gasses by generating an unstable gas/saline front within a formation. US Patent 9316093 B2 (2016)

  • Gasda, E.S., Nordbotten, J.M., Celia, M.A.: Vertical equilibrium with sub-scale analytical methods for geological CO\(_2\) sequestration. Comput. Geosci. 13, 469–481 (2009)

    Article  Google Scholar 

  • Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertically averaged approaches for CO2 migration with solubility trapping. Water Resour. Res. 47(5) (2011). doi:10.1029/2010WR009075

  • Golding, M.J., Neufeld, J.A., Hesse, M.A.: Two-phase gravity currents in porous media. J. Fluid Mech. 678, 248–270 (2011)

    Article  Google Scholar 

  • Guo, B., Zheng, M., Celia, H.S.: Axisymmetric flows from fluid injection into a confined porous medium. Phys. Fluids 28(2), 022107 (2016)

    Article  Google Scholar 

  • Hesse, M., Tchelepi, H., Orr, F.J.: Gravity currents with residual trapping. J. Fluid Mech. 611, 35–60 (2008)

    Article  Google Scholar 

  • Hinch, E.J.: Method of multiple scales. In: Hinch, E.J. (ed.) Perturbation Methods. Cambridge University Press, Cambridge (1991)

    Chapter  Google Scholar 

  • Huppert, H.E., Woods, A.W.: Gravity-driven flows in porous layers. J. Fluid Mech. 292, 55–69 (1995)

    Article  Google Scholar 

  • Juanes, R., MacMinn, C., Szulczewski, M.: The footprint of the CO\(_2\) plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Media 82, 19–30 (2009)

    Article  Google Scholar 

  • Lyle, S., Huppert, H., Hallworth, M., Bickle, M., Chadwick, A.: Axisymmetric gravity currents in a prous medium. J. Fluid Mech. 543, 293–302 (2005)

    Article  Google Scholar 

  • MacMinn, C., Szulczewski, M.L., Juanes, R.: CO\(_2\) migration in saline aquifers. Part 2: capillary and solubility trapping. J. Fluid Mech. 688, 321–331 (2011)

    Article  Google Scholar 

  • Malekzadeh, F., Dusseault, M.: A solution for the transition zone isosats in two-phase primary drainage in the presence of gravity. Comput. Geosci. 17, 757–771 (2013)

    Article  Google Scholar 

  • Malekzadeh, F., Leonenko, Y., Dusseault, M.: Cyclic injection of \({\rm CO}_2\) into saline aquifer with extended interface. Int. J. Glob. Environ. (2017). http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=%20IJGENVI

  • Nordbotten, M.J., Celia, M.A.: Similarity solution for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006)

    Article  Google Scholar 

  • Nordbotten, J.M., Dahle, H.K.: Impact of the capillary fringe in vertically integrated models for \({\rm CO}_2\) storage. Water Resour. Res. 47(2) (2011). doi:10.1029/2009WR008958

  • Nordabotten, J.M., Celia, M.A., Bachu, A.: Injection and storage of CO\(_2\) in deep saline aquifers. Transp. Porous Media 58, 339–360 (2005)

    Article  Google Scholar 

  • Pegler, S.S., Huppert, H.E., Neufeld, J.A.: Fluid injection into a confined porous layer. J. Fluid Mech. 745, 592–620 (2014)

    Article  Google Scholar 

  • Sarkarfarshi, M., Malekzadeh, F., Gracie, R., Dusseault, M.: Parametric sensitivity analysis for CO\(_2\) geosequestration. Int. J. Greenh. Gas Control 23, 61–71 (2014)

    Article  Google Scholar 

  • Toro, E.F.: Some properties of the euler equations. In: Toro, E.F. (ed.) Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, pp. 87–114. Springer, New York (2004)

    Google Scholar 

  • Vilarrasa, V., Bolster, D., Dentz, M., Olivella, S., Carrera, J.: Effects of CO\(_2\) compressibility on CO\(_2\) storage in deep saline aquifers. Transp. Porous Media 85, 619–639 (2010)

    Article  Google Scholar 

  • Vilarrasa, V., Carrera, J., Bolster, D., Dentz, M.: Semi analytical solution for CO\(_2\) plume shape and pressure evolution during CO\(_2\) injection in deep saline formations. Transp. Porous Media 58, 339–360 (2013)

    Google Scholar 

  • Wallace, B.: Constrained Optimization: Kuhn-Tucker Conditions. Royal Holloway, Egham (2004)

    Google Scholar 

  • Yortsos, Y.C.: A theoretical analysis of vertical flow equilibrium. Transp. Porous Media 18(2), 107–129 (1995)

    Article  Google Scholar 

  • Zheng, Z., Guo, B., Christov, I., Celia, M., Stone, H.: Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881–909 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad A. Malekzadeh.

Appendices

Appendix 1: Conservative Equation Derivation

By substituting Eq. (9) in Eq. (6), the conservation equation is reduced to

$$\begin{aligned} \begin{array}{lll} &{}&{}\displaystyle \frac{Q_\mathrm{o} B}{2\pi r}=-\left( {\int \limits _{0}^{Bb} {\left( {\frac{K}{\mu _\mathrm{n} }} \right) } {\hbox {d}}z+\displaystyle \int \limits _{Bb}^{B} {K\left( {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }+\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }} \right) } {\hbox {d}}z} \right) \partial _\mathrm{r} p-\displaystyle \int \limits _{Bb}^{B} {\left( {\frac{Kk_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }\partial _\mathrm{r} P_\mathrm{c} } \right) } {\hbox {d}}z \\ &{}&{}\qquad \qquad -B\displaystyle \int \limits _{Bb}^{B} {\left( {\frac{Kk_\mathrm{rn} \left( S \right) \Delta \gamma _\mathrm{w} }{\mu _\mathrm{n} }{\hbox {d}}z} \right) } \partial _\mathrm{r} b \\ \end{array} \end{aligned}$$
(39)

The velocity of water and the injectant in the drained zone can therefore be expressed as follows. Radial derivative of pressure is derived as a function of injection rate and capillary pressure.

$$\begin{aligned} \partial _\mathrm{r} p=-\frac{\frac{Q_\mathrm{o} B}{2\pi r}+\displaystyle \int \limits _{Bb}^{B} {\left( {K\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }\partial _\mathrm{r} P_\mathrm{c} } \right) } {\hbox {d}}z+B\partial _\mathrm{r} b\displaystyle \int \limits _{Bb}^{B} {\left( {K\frac{k_\mathrm{rn} \left( S \right) \Delta \gamma _\mathrm{w} }{\mu _\mathrm{n} }{\hbox {d}}z} \right) } }{\frac{BbK}{\mu _\mathrm{n} }+\displaystyle \int \limits _{Bb}^{B} {K\left( {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }+\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }} \right) } {\hbox {d}}z} \end{aligned}$$
(40)

Velocity of the wetting phase becomes:

$$\begin{aligned} \mathbf{u}_\mathrm{w} \cdot \mathbf{e}_\mathrm{r} =\frac{\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }\left( {\frac{Q_\mathrm{o} B}{2\pi r}+\displaystyle \int \limits _{Bb}^{B} {K\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }\partial _\mathrm{r} P_\mathrm{c} } {\hbox {d}}z+B\partial _\mathrm{r} b\displaystyle \int \limits _{Bb}^{B} {K\frac{k_\mathrm{rn} \left( S \right) \Delta \gamma _\mathrm{w} }{\mu _\mathrm{n} }{\hbox {d}}z} } \right) }{\left( {\frac{Bb}{\mu _\mathrm{n} }+\displaystyle \int \limits _{Bb}^{B} {\left( {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }+\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }} \right) } {\hbox {d}}z} \right) } \end{aligned}$$
(41)

The mass conservation equation becomes:

$$\begin{aligned} 2\frac{\partial }{\partial r^{2}}\frac{\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }\left( {\frac{Q_\mathrm{o} B}{2\pi }+r\displaystyle \mathop {\int }\limits _{Bb}^{B} {K\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }\partial _\mathrm{r} P_\mathrm{c} } {\hbox {d}}z+Br\partial _\mathrm{r} b\displaystyle \mathop {\int }\limits _{Bb}^{B} {\frac{Kk_\mathrm{rn} \left( S \right) \Delta \gamma }{\mu _\mathrm{n} }{\hbox {d}}z} } \right) }{\left( {\frac{Bb}{\mu _\mathrm{n} }+\displaystyle \mathop {\int }\limits _{Bb}^{B} {\left( {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }+\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }} \right) } {\hbox {d}}z} \right) }=\varphi \frac{\partial S}{\partial t} \end{aligned}$$
(42)

By a simple vertical averaging, Eq. (9) becomes:

$$\begin{aligned}&2\frac{\partial }{\partial r^{2}}\left( {\begin{array}{l} \frac{\frac{Q_\mathrm{o} B}{2\pi }\displaystyle \mathop {\int }\limits _{Bb}^{B} {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }{\hbox {d}}z} }{\left( {\frac{Bb}{\mu _\mathrm{n} }+\displaystyle \mathop {\int }\limits _{Bb}^{B} {\left( {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }+\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }} \right) } {\hbox {d}}z} \right) }+\displaystyle \frac{r\mathop {\int }\limits _{Bb}^{B} {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }{\hbox {d}}z} \displaystyle \mathop {\int }\limits _{Bb}^{B} {K\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }\partial _\mathrm{r} P_\mathrm{c} } {\hbox {d}}z}{\left( {\frac{Bb}{\mu _\mathrm{n} }+\displaystyle \mathop {\int }\limits _{Bb}^{B} {\left( {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }+\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }} \right) } {\hbox {d}}z} \right) }+ \\ \frac{rB\Delta \gamma \partial _\mathrm{r} b\displaystyle \mathop {\int }\limits _{Bb}^{B} {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }{\hbox {d}}z} \displaystyle \mathop {\int }\limits _{Bb}^{B} {K\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }} {\hbox {d}}z}{\left( {\frac{Bb}{\mu _\mathrm{n} }+\displaystyle \mathop {\int }\limits _{Bb}^{B} {\left( {\frac{k_\mathrm{rw} \left( S \right) }{\mu _\mathrm{w} }+\frac{k_\mathrm{rn} \left( S \right) }{\mu _\mathrm{n} }} \right) } {\hbox {d}}z} \right) } \\ \end{array}} \right) \nonumber \\&\quad =\varphi \frac{\partial \left( {S_\mathrm{r} Bb+\displaystyle \mathop {\int }\limits _{Bb}^{B} {S{\hbox {d}}z} } \right) }{\partial t} \end{aligned}$$
(43)

Equation (43) sums the wetting phase conservation equations and incorporates contributions of viscous, capillary and buoyancy forces.

Appendix 2: First-Order Solution

Equation (37) is the first order of the conservation equation. After solving Eq. (36), the zeroth-order solution of the equation is known and Eq. (37) becomes linear.

$$\begin{aligned} U_{1}^{i} \frac{\partial o_{1} }{\partial \xi }+U_{2}^{i} o_{1} +U_{3}^{i} =\frac{\partial o_{1} }{\partial \tau } \end{aligned}$$
(44)

\(U_{1}^{i}\), \(U_{2}^{i}\), and \(U_{3}^{i}\) are functions of \(o_{0}\) and Eq. (44) is a linear differential equation. By using the method of characteristics and introducing a new variable as \(\omega =\xi -U_{1}^{i} \tau \), Eq. (44) is simplified to

$$\begin{aligned} \frac{\partial o_{1} }{\partial \omega }+U_{2}^{i} o_{1} +U_{3}^{i} =0 \end{aligned}$$
(45)

Analytical solution of Eq. (45) is straightforward.

$$\begin{aligned} o_{1} =-\frac{\displaystyle \mathop {\int }\limits _{\omega _{0} }^{\omega } {e^{\mathop {\int }\limits _{\omega _{0}}^{{\omega }^{\prime }}{U_{2}^{i} {\hbox {d}}{\omega }^{\prime \prime }} }U_{3}^{i} d{\omega }^{\prime }} }{\displaystyle \mathop {\int }\limits _{\omega _{0}}^{\omega } {e^{\mathop {\int }\limits _{\omega _{0}}^{{\omega }^{\prime }} {U_{2}^{i} {\hbox {d}}{\omega }^{\prime \prime }} }d{\omega }^{\prime }} } \end{aligned}$$
(46)

\(o_{1}\) is the first-order correction of saturation. It is possible to evaluate higher-order solutions of the equations resulting from the perturbation method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekzadeh, F.A., Heidari, R. & Dusseault, M. An Analytical Solution for Capillary Gravity Drainage with Dominant Viscous Forces. Transp Porous Med 118, 417–434 (2017). https://doi.org/10.1007/s11242-017-0864-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0864-6

Keywords

Navigation