Skip to main content
Log in

Influence of root resistivity on plant water uptake mechanism, part I: numerical solution

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The issue of water flow through the root zone of field crops represents a complex problem requiring knowledge of a large spectrum of phenomena from various disciplines. Although many investigations have been devoted to gain better understanding of water dynamics in the root zone, the problem is still insufficiently understood. The main objective of the presented work was to analyze the importance of root water resistivity in the plant water extraction process. The problem was solved numerically for a wide range of the soil–root conductivity ratio (SRCR). Two different types of root water uptake (RWU) mechanisms were obtained. The first one is related to low root resistivity or low SRCR, and, thus, exhibits a so-called “moving uptake front” (MUF) effect observed previously in several experimental studies. The second one is inherent in large values of root resistivity or high values of SRCR (larger than 104), and is strongly dependent on the root density distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M.: FAO – Food and Agricultural Organization of the United Nations, M-56, USBN 92-5-104219-5, Rome (1998)

  • Bresler E., McNeal B.L. and Carter D.L. (1982). Saline and sodic soils. Principles-Dynamics-Modeling. Springer – Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Cardon G.E. and Letey J. (1992a). Plant water uptake terms evaluated for soil water and solute movement models. Soil Sci. Soc. Am. J. 32: 1876–1880

    Article  Google Scholar 

  • Cardon G.E. and Letey J. (1992b). Soil-based irrigation and salinity management model: I. Plant water uptake calculations. Soil Sci. Soc. Am. J. 56: 1881–1887

    Article  Google Scholar 

  • Cardon G.E. and Letey J. (1992c). Soil-based irrigation and salinity management model: II. Water and solute movement calculations. Soil Sci. Soc. Am. J. 56: 1887–1892

    Article  Google Scholar 

  • Feddes R.A., Bresler E. and Neuman S.P. (1974). Field test of a modified numerical model for water uptake by root systems. Water Resour. Res. 10: 1199–1206

    Google Scholar 

  • Feddes R.A., Kowalik P.J., Malinka K.K. and Zaradny H. (1976). Simulation of field water uptake by plants using a soil water dependent root extraction function. J. Hydrol. 31: 13–26

    Article  Google Scholar 

  • Gärdenäs A.I., Hopmans J.W., Hanson B.R. and Šimùnek J. (2005). Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agric. Water Manage. 74: 219–242

    Article  Google Scholar 

  • Gardner W.R. and Ehlig C.F. (1962). Some observations on the movement of water to plant roots. Agron. J. 54: 453–456

    Article  Google Scholar 

  • Gardner W.R. (1960). Dynamic aspects of water and availability to plans. Soil Sci. Soc. Am. Proc. 89: 63–73

    Google Scholar 

  • Gardner W.R. (1964). Relation of root distribution to water uptake and availability. Agron. J. 56: 41–45

    Article  Google Scholar 

  • Gardner W.R. (1991). Modeling water uptake by roots. Irrigation Sci. 12: 109–114

    Article  Google Scholar 

  • Gradmann H. (1928). Untersuchunger Über die Wasserverhältnisse des Bodens als Grundlage des Pflanzenwachstums. Jahrb. Wiss Bot. 69(1): 1–100

    Google Scholar 

  • Herkelrath W.N., Miller E.E. and Gardner W.R. (1977). Water uptake by plants. 2. The root contact model. Soil Sci. Soc. Am. J. 41: 1039–1043

    Article  Google Scholar 

  • Hillel D. (1975). Evaporation from bare soil under steady and diurnally fluctuating evaporativity. Soil Sci. 120: 230–237

    Article  Google Scholar 

  • Hillel D. (1980). Application of Soil Physics. Academic Press, New York

    Google Scholar 

  • Hoffman, G.J., Howell, T.A., Solomon, K.H.: Management of Farm Irrigation Systems, ASAE Monograph, The American Society of Agricultural Engineers (1990)

  • Huber B. (1924). Die Beurteilung des Wasserhaushaltes der Pflanze, Ein Beitrag zur Vergleichenden Physiologie. Jahrb. Wiss. Bot. 64: 1–120

    Google Scholar 

  • Humphries S.W. and Long S.P. (1995). WIMOVAC: a software package for modeling the dynamics of plant leaf and canopy photosynthesis. CABIOS 11: 361–371

    Google Scholar 

  • Hupet F., Lambot S., Feddes R.A., van Dam J.C. and Vanclooster M. (2003). Estimation of root water uptake parameters by inverse modeling with soil water content data. Water Resour. Res. 39(11): 1312–1339

    Article  Google Scholar 

  • Jones J.W., Zur B., Boote K.J. and Hammond L.C. (1982). Plant resistance to water flow in field soybeans: I. Non-Limiting soil moisture. Agron. J. 74: 92–98

    Article  Google Scholar 

  • Kramer, P.J., Boyer, J.S.: Water relations of plants and soils. Academic Press (1995)

  • Li Y., Fuchs M., Cohen Y. and Wallach R. (2002a). Water uptake profile response of corn to soil moisture depletion. Plant, Cell Environ. 25: 491–500

    Article  Google Scholar 

  • Li Y., Wallach R. and Cohen Y. (2002b). The role of soil hydraulic conductivity on the spatial and temporal variation of root water uptake in drip-irrigated corn. Plant Soil 243: 131–142

    Article  Google Scholar 

  • Lynn B.H. and Carlson T.N. (1990). A stomatal resistance model illustrating plant vs external control of transpiration. Agric Forest Meteorol 52: 5–43

    Article  Google Scholar 

  • Miyamoto N., Steudle E., Hirasawa T. and Lafitte R. (2001). Hydraulic conductivity of rice roots. J. Exp. Bot. 52(362): 1835–1846

    Article  Google Scholar 

  • Molz F.J. and Remson I. (1970). Extraction of soil moisture use by transpiring plants. Water Resour. Res. 6(5): 1346–1356

    Google Scholar 

  • Mualem Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12: 513–552

    Google Scholar 

  • Neuman, Sh. P., Feddes, R.A., Bresler, E.: Finite Element Simulation of Flow in Saturated – Unsaturated Soils Considering Water Uptake by Plants, Project No. ALO-SWC-77, Technion, Haifa, Israel (1974)

  • Newman E.I. (1969a). Resistance to water flow in soil and plant: I. Soil resistance in relation to amount of root: theoretical estimates. J. Appl. Ecol. 6: 1–2

    Article  Google Scholar 

  • Newman E.I. (1969b). Resistance to water flow in soil and plant: II. A review of experimental evidence on the rhizosphere resistance. J. Appl. Ecol. 6: 261–272

    Article  Google Scholar 

  • Nimah M.N. and Hanks R.J. (1973a). Model for estimating soil water, plant and atmospheric interrelations, 1. Description and sensitivity. Soil Sci. Soc. Am. Proc. 37: 522–527

    Article  Google Scholar 

  • Nimah M.N. and Hanks R.J. (1973b). Model for estimating soil water, plant and atmospheric interrelations, 2. Field test for model. Soil Sci. Soc. Am. Proc. 37: 528–531

    Article  Google Scholar 

  • Nobel P.S. and Cui M. (1992). Hydraulic conductances of the soil, the root-soil area gap and the root: changes for desert succulents in drying soil. J Exp. Bot. 43: 319–326

    Article  Google Scholar 

  • Nobel, P.S.: Physiochemical and environmental plant physiology, Academic Press (1999)

  • Ogata G., Richards L.A., Fungardi A.A. and Drake R.L. (1960). Soil moisture availability for transpiration. Resour. Res. 4(6): 1161–1169

    Google Scholar 

  • Philip J.R. (1957). The physical principles of soil water movement during the irrigation cycle. Irrig. Drain. Quest. 8: 125–154

    Google Scholar 

  • Polak A. and Wallach R. (2001). Analysis of soil moisture variations in an irrigated orchard root zone. Plant Soil 233: 145–159

    Article  Google Scholar 

  • Reid J.B. and Huck M.G. (1990). Diurnal variation of crop hydraulic resistance: a new analysis”. Agron. J. 82: 827–834

    Article  Google Scholar 

  • Rose C.W. and Stern W.R. (1967). Determination of withdrawal of water from soil by crop roots as a function of depth and time. Aust. J. Res. 5: 11–19

    Article  Google Scholar 

  • Rowse H.R., Stone D.A. and Gerwitz A. (1978). Simulation of the water distribution in soil. 2. The model for cropped soil and its comparison with experiment. Plant Soil 49: 534–550

    Google Scholar 

  • Saxton, K.E.: Mathematical modeling of evapotranspiration on agricultural watersheds, In: Singh, H. (ed.) Modeling Components of the Hydrologic Cycle, 183–203 (1982)

  • Šimùnek, J., Šejna, M., and van Genuchten, M. Th.: The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, User Manual, Version 1.0, PC-Progress, Prague, Czech Republic (2006)

  • Steudle E. and Peterson C.A. (1998). How does water get through roots?. J. Exp. Bot. 49(322): 775–788

    Article  Google Scholar 

  • Steudle E. (2000). Water uptake by plant roots: an integration view. Plant Soil 226: 45–56

    Article  Google Scholar 

  • Taylor H.M. and Klepper B. (1975). Water uptake by cotton root systems: an examination of assumptions in the single root model. Soil Sci. 120: 57–67

    Article  Google Scholar 

  • Taylor H.M., Upchurch D.R. and McMichael B.L. (1992). Root hydraulic resistance: implication in modeling nutrient and water uptake. J. Plant Nutr. 15: 727–736

    Article  Google Scholar 

  • Tratch, D.: Moisture uptake within the root zone, M.Sc. Thesis, Department of Civil Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (1996)

  • van Bavel C.H.M., Stirk G.B. and Brust K.J. (1968). Hydraulic properties of a clay loam soil and the field measurements of water uptake by roots, 1. Interpretation of water content and pressure profiles. Soil Sci. Soc. Am. Proc. 32: 310–317

    Google Scholar 

  • van den Honert T.H. (1948). Water transport as a catenary process. Faraday Soc. Discuss. 3: 146–153

    Article  Google Scholar 

  • van Genuchten M.Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892–898

    Article  Google Scholar 

  • van Genuchten, M. Th.: A Numerical Model for Water and Solute Movement in and Below the Root Zone, U.S. Salinity Laboratory, USDA-ARS, Riverside, CA (1987)

  • Whisler F.D., Klute A. and Millington R.J. (1968). Analysis of steady-state evapotranspiration from a soil column. Soil Sci. Soc. Am. Proc. 32: 167–174

    Article  Google Scholar 

  • Zuo Q. and Zhang R. (2002). Estimating root-water-uptake using an inverse method. Soil Sci. 169(9): 561–571

    Article  Google Scholar 

  • Zur B., Jones J.W., Boote K.J. and Hammond L.C. (1982). Total resistance to water flow in field soybeans: II. Limiting soil moisture. Agron. J. 74: 99–105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Levin.

Additional information

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, A., Shaviv, A. & Indelman, P. Influence of root resistivity on plant water uptake mechanism, part I: numerical solution. Transp Porous Med 70, 63–79 (2007). https://doi.org/10.1007/s11242-006-9084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9084-1

Keywords

Navigation