Skip to main content

Investigating Soil–Root Interactions with the Numerical Model R-SWMS

  • Protocol
  • First Online:
Plant Systems Biology

Abstract

In this chapter, we present the Root and Soil Water Movement and Solute transport model R-SWMS, which can be used to simulate flow and transport in the soil–plant system. The equations describing water flow in soil–root systems are presented and numerical solutions are provided. An application of R-SWMS is then briefly discussed, in which we combine in vivo and in silico experiments in order to decrypt water flow in the soil–root domain. More precisely, light transmission imaging experiments were conducted to generate data that can serve as input for the R-SWMS model. These data include the root system architecture, the soil hydraulic properties and the environmental conditions (initial soil water content and boundary conditions, BC). Root hydraulic properties were not acquired experimentally, but set to theoretical values found in the literature. In order to validate the results obtained by the model, the simulated and experimental water content distributions were compared. The model was then used to estimate variables that were not experimentally accessible, such as the actual root water uptake distribution and xylem water potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  2. Brooks JR (2015) Water, bound and mobile. Science 349:138–139

    Article  CAS  PubMed  Google Scholar 

  3. Green SR, Kirkham MB, Clothier BE (2006) Root uptake and transpiration: from measurements and models to sustainable irrigation. Agric Water Manag 86:165–176

    Article  Google Scholar 

  4. Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys 50:RG2005

    Article  Google Scholar 

  5. Li L, van der Tol C, Chen X, Jing C, Su B, Luo G, Tian X (2013) Representing the root water uptake process in the common land model for better simulating the energy and water vapour fluxes in a central Asian desert ecosystem. J Hydrol 502:145–155

    Article  Google Scholar 

  6. Canal N, Calvet J-C, Decharme B, Carrer D, Lafont S, Pigeon G (2014) Evaluation of root water uptake in the ISBA-A-gs land surface model using agricultural yield statistics over France. Hydrol Earth Syst Sci 18:4979–4999

    Article  Google Scholar 

  7. Tang J, Riley WJ, Niu J (2015) Incorporating root hydraulic redistribution in CLM4.5: Effects on predicted site and global evapotranspiration, soil moisture, and water storage. J Adv Model Earth Syst 7:1828–1848. https://doi.org/10.1002/2015MS000484

  8. Zarebanadkouki M, Kim YX, Carminati A (2013) Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil. New Phytol 199:1034–1044

    Article  CAS  PubMed  Google Scholar 

  9. Lobet G, Couvreur V, Meunier F, Javaux M, Draye X (2014) Plant water uptake in drying soils. Plant Physiol 164:1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Willigen P, van Dam JC, Javaux M, Heinen M (2012) Root water uptake as simulated by three soil water flow models. Vadose Zone J 11:vzj2012.0018. https://doi.org/10.2136/vzj2012.0018

    Article  Google Scholar 

  11. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, London

    Google Scholar 

  12. Richards LA (1931) Capillary conduction of liquids through porous mediums. Phys J Gen Appl Phys 1:318–333

    Google Scholar 

  13. Gardner WR (1960) Dynamic aspects of water availability to plants. Soil Sci 89:63–73

    Article  Google Scholar 

  14. Molz FJ, Remson I (1970) Extraction term models of soil moisture use by transpiring plants. Water Resour Res 6:1346–1356

    Article  CAS  Google Scholar 

  15. Feddes RA, Kowalik P, Kolinska-Malinka K, Zaradny H (1976) Simulation of field water uptake by plants using a soil water dependent root extraction function. J Hydrol 31:13–26

    Article  Google Scholar 

  16. Jarvis N (1989) A simple empirical-model of root water-uptake. J Hydrol 107:57–72

    Article  Google Scholar 

  17. Javaux M, Couvreur V, Vanderborght J, Vereecken H (2013) Root water uptake: from three-dimensional biophysical processes to macroscopic modeling approaches. Vadose Zone J 12:1–6. https://doi.org/10.2136/vzj2013.02.0042

    Article  Google Scholar 

  18. Feddes RA, Raats PAC (2004) Parameterizing the soil–water–plant root system. In: Feddes RA, de Rooij GH, van Dam JC (eds) Unsaturated zone model. Prog. Chall. Appl. Kluwer academic publishers, Dordrecht, The Netherlands, pp 95–144

    Google Scholar 

  19. Vrugt JA, Van Wijk MT, Hopmans JW, Simunek J (2001) One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour Res 37:2457–2470

    Article  Google Scholar 

  20. Kuchenbuch RO, Gerke HH, Buczko U (2008) Spatial distribution of maize roots by complete 3D soil monolith sampling. Plant Soil 315:297–314

    Article  Google Scholar 

  21. Pages L, Vercambre G, Drouet JL, Lecompte F, Collet C, Le Bot J (2004) Root Typ: a generic model to depict and analyse the root system architecture. Plant Soil 258:103–119

    Article  CAS  Google Scholar 

  22. Dunbabin VM, Postma JA, Schnepf A, Pagès L, Javaux M, Wu L, Leitner D, Chen YL, Rengel Z, Diggle AJ (2013) Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 372:93–124

    Article  CAS  Google Scholar 

  23. Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ (2012) Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil 352:1–22

    Article  CAS  Google Scholar 

  24. Stingaciu L, Schulz H, Pohlmeier A, Behnke S, Zilken H, Javaux M, Vereecken H (2013) In situ root system architecture extraction from magnetic resonance imaging for water uptake modeling. Vadose Zone J 12(1):vzj2012.0019. https://doi.org/10.2136/vzj2012.0019

    Article  Google Scholar 

  25. Lobet G, Hachez C, Chaumont F, Javaux M, Draye X (2013) Chap. 24: Root water uptake and water flow in the soil–root domain. In Plant Roots: the Hidden Half. Eds A. Eshel, T. Beeckman, CRC Press Book

    Google Scholar 

  26. Clausnitzer V, Hopmans JW (1994) Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant Soil 164:299–314

    Article  CAS  Google Scholar 

  27. Somma F, Hopmans JW, Clausnitzer V (1998) Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake. Plant Soil 202:281–293

    Article  CAS  Google Scholar 

  28. Doussan C, Pierret A, Garrigues E, Pages L (2006a) Water uptake by plant roots: II - modelling of water transfer in the soil root-system with explicit account of flow within the root system - comparison with experiments. Plant Soil 283:99–117

    Article  CAS  Google Scholar 

  29. Javaux M, Schroeder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 7:1079–1088

    Article  Google Scholar 

  30. Schroeder T, Javaux M, Vanderborght J, Koerfgen B, Vereecken H (2009) Implementation of a microscopic soil-root hydraulic conductivity drop function in a three-dimensional soil-root architecture water transfer model. Vadose Zone J 8:783–792

    Article  Google Scholar 

  31. Couvreur V, Vanderborght J, Draye X, Javaux M (2014b) Dynamic aspects of soil water availability for isohydric plants: focus on root hydraulic resistances. Water Resour Res 50:8891–8906

    Article  Google Scholar 

  32. Schröder N, Javaux M, Vanderborght J, Steffen B, Vereecken H (2012) Effect of root water and solute uptake on apparent soil Dispersivity: a simulation study. Vadose Zone J 11:vzj2012.0009. https://doi.org/10.2136/vzj2012.0009

    Article  Google Scholar 

  33. Schröder N, Lazarovitch N, Vanderborght J, Vereecken H, Javaux M (2014) Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. Plant Soil 377:277–293

    Article  Google Scholar 

  34. Huber K, Vanderborght J, Javaux M, Schröder N, Dodd IC, Vereecken H (2014) Modelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures. Plant Soil 384:93–112

    Article  CAS  Google Scholar 

  35. Huber K, Vanderborght J, Javaux M, Vereecken H (2015) Simulating transpiration and leaf water relations in response to heterogeneous soil moisture and different stomatal control mechanisms. Plant Soil 394:109–126

    Article  CAS  Google Scholar 

  36. Koebernick N, Huber K, Kerkhofs E, Vanderborght J, Javaux M, Vereecken H, Vetterlein D (2015) Unraveling the hydrodynamics of split root water uptake experiments using CT scanned root architectures and three dimensional flow simulations. Front Plant Sci 6:370. https://doi.org/10.3389/fpls.2015.00370

    Article  PubMed  PubMed Central  Google Scholar 

  37. Landl M, Huber K, Schnepf A, Vanderborght J, Javaux M, Bengough AG, Vereecken H (2017) A new model for root growth in soil with macropores. Plant Soil 415:99–116

    Article  CAS  Google Scholar 

  38. Schwartz N, Carminati A, Javaux M (2016) The impact of mucilage on root water uptake—a numerical study. Water Resour Res 52:264–277

    Article  Google Scholar 

  39. Schneider CL, Attinger S, Delfs JO, Hildebrandt A (2010) Implementing small scale processes at the soil-plant interface-the role of root architectures for calculating root water uptake profiles Hydrol. Earth Syst Sci 14:279–289

    Article  Google Scholar 

  40. Tournier P-H, Hecht F, Comte M (2014) Finite element model of soil water and nutrient transport with root uptake: explicit geometry and unstructured adaptive meshing. Transp Porous Media 106:487–504

    Article  Google Scholar 

  41. Postma JA, Kuppe C, Owen MR, Mellor N, Griffiths M, Bennett MJ, Lynch JP, Watt M (2017) OpenSimRoot: widening the scope and application of root architectural models. New Phytol 215:1274–1286

    Article  PubMed  PubMed Central  Google Scholar 

  42. Koch T, Heck K, Schröder N, Class H, Helmig R (2018) A new simulation framework for soil–root interaction, evaporation, root growth, and solute transport. Vadose Zone J 17:170210

    Article  Google Scholar 

  43. Zhou X-R, Schnepf A, Vanderborght J, Leitner D, Lacointe A, Vereecken H, Lobet G (2020) CPlantBox, a whole-plant modelling framework for the simulation of water- and carbon-related processes. In Silico Plants 2:diaa001. https://doi.org/10.1093/insilicoplants/diaa001

    Article  CAS  Google Scholar 

  44. Schnepf A, Black CK, Couvreur V, Delory BM, Doussan C, Koch A, Koch T, Javaux M, Landl M, Leitner D et al (2020) Call for participation: collaborative benchmarking of functional-structural root architecture models. The case of root water uptake. Front. Plant Sci 11:316

    Google Scholar 

  45. Koch A, Meunier F, Vanderborght J, Garré S, Pohlmeier A, Javaux M (2019) Functional–structural root-system model validation using a soil MRI experiment. J Exp Bot 70:2797–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Couvreur V, Faget M, Lobet G, Javaux M, Chaumont F, Draye X (2018) Going with the flow: multiscale insights into the composite nature of water transport in roots. Plant Physiol 178:1689–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamza MA, Aylmore LAG (1992) Soil solute concentration and water uptake by single lupin and radish plant roots. Plant Soil 145:187–196

    Article  CAS  Google Scholar 

  48. Leitner D, Meunier F, Bodner G, Javaux M, Schnepf A (2014) Impact of contrasted maize root traits at flowering on water stress tolerance – a simulation study. Field Crops Res 165:125–137. https://doi.org/10.1016/j.fcr.2014.05.009

    Article  Google Scholar 

  49. Couvreur V (2013) Emergent properties of plant hydraulic architecture: a modelling study. Université catholique de Louvain, Louvain-la-Neuve, Belgique

    Google Scholar 

  50. Tardieu F, Davies WJ (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349

    Article  CAS  Google Scholar 

  51. Couvreur V, Vanderborght J, Beff L, Javaux M (2014a) Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models. Hydrol Earth Syst Sci 18:1723–1743

    Article  Google Scholar 

  52. Simunek J, Huang K, Van Genuchten MT (1995) The SWMS_3D code for simulating water flow and solute transport in three-dimensional variably-saturated media. US Salin. Lab. Res. Rep. 139:U.S. Salinity Laboratory, USDA, ARS, Riverside, California.

    Google Scholar 

  53. Celia MA, Bouloutas ET, Zarba RL (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26:1483–1496

    Article  Google Scholar 

  54. Doussan C, Vercambre G, Pagès L (1998) Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—distribution of axial and radial Conductances in maize. Ann Bot 81:225–232

    Article  Google Scholar 

  55. Zarebanadkouki M, Meunier F, Couvreur V, Cesar J, Javaux M, Carminati A (2016) Estimation of the hydraulic conductivities of lupine roots by inverse modelling of high-resolution measurements of root water uptake. Ann Bot 118:853–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ahmed MA, Zarebanadkouki M, Meunier F, Javaux M, Kaestner A, Carminati A (2018) Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize. J Exp Bot 69:1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garrigues E, Doussan C, Pierret A (2006) Water uptake by plant roots: I – formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant Soil 283:83–98

    Article  CAS  Google Scholar 

  58. Lobet G (2012) Regulation of water flow in the soil-root domain. New tools and methods. Unviersité catholique de Louvain, Louvain-la-Neuve, Belgique

    Google Scholar 

  59. Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Dam JC, Stricker JNM, Droogers P (1994) Inverse method to determine soil hydraulic functions from multistep outflow experiments. Soil Sci Soc Am J 58:647

    Article  Google Scholar 

  61. Zufferey V, Cochard H, Ameglio T, Spring J-L, Viret O (2011) Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). J Exp Bot 62:3885–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson DM, Mcculloh KA, Woodruff DR, Meinzer FC (2012) Evidence for xylem embolism as a primary factor in dehydration-induced declines in leaf hydraulic conductance. Plant Cell Environ 35:760–769

    Article  CAS  PubMed  Google Scholar 

  63. Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Javaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meunier, F. et al. (2022). Investigating Soil–Root Interactions with the Numerical Model R-SWMS. In: Lucas, M. (eds) Plant Systems Biology. Methods in Molecular Biology, vol 2395. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1816-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1816-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1814-1

  • Online ISBN: 978-1-0716-1816-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics