Skip to main content

Advertisement

Log in

Micropropagation of endangered Iris ferdowsii Joharchi & Memariani through callus induction

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Choosing the best method of plant propagation is one of the basic principles in preserving wild plants as a genetic source. Iris ferdowsii Joharchi & Memariani, sp. is a newly introduced plant and is in danger of extinction. In order to induce callus, leafbase explants of seedlings grown from in vitro seed embryos were used. Leafbase explants obtained from 21-day-old seedlings. Callus induction was performed in MS basal culture medium containing different concentrations of BA and 2,4-D. The results showed that the use of 4.52 µM 2,4-D + 10.92 µM BA was the best combination to induce callus from the explant (51.11%). High quality calluses were obtained in this combination. By increasing the concentration of BA and 2,4-D in the culture medium, the quality of callus decreased and also the amount of callus production decreased. After transferring calli to MS culture medium containing different concentrations of BA and NAA, regeneration was observed in them. The best callus regeneration compound was 7.28 µM BA + 1.07 µM NAA. Callus regeneration in these treatments was more than 80%. Rooting was performed in ½ MS medium without plant growth regulator. Also, the use of perlite substrates and 17 °C is the best condition for the acclimation of seedlings produced under in vitro culture. The result were shown that callus induction by leafbase is the effective way to propagate Iris ferdowsii in outside the natural plant habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BA:

Benzyl adenine

2,4-D:

2,4-Dichlorophenoxyacetic acid

NAA:

1-Naphthaleneacetic acid

References

  • Abbasi B, Saxena PK, Murch SJ, Liu CZ (2007) Echinacea biotechnology: Challenges and opportunities. Vitro Cell Dev Biology 43:481–492

    Article  CAS  Google Scholar 

  • Abd Elaleem KG, Modawi RS, Khalafalla MM (2009) Effect of plant growth regulators on callus induction and plant regeneration in tuber segment culture of potato (Solanum tuberosum L.) cultivar Diamant. Afr J Biotechnol 8:2529–2534

    CAS  Google Scholar 

  • Ahmad N, Fazal H, Zamir R (2011) Callogenesis and shoot organogenesis from flowers of Stevia rebaudiana (Bert). Sugar Tech 13(2):174–177

    Article  CAS  Google Scholar 

  • Al-Gabbiesh A, Hassawi DS, Afifi FU (2006) In vitro propagation of endangered Iris species. J Biol Sci 6(6):1035–1040

    Article  Google Scholar 

  • Anjusha S, Gangaprasad A (2017) Callus culture and in vitro production of anthraquinone in Gynochthodes umbellata L. Razafim and B. Bremer (Rubiaceae). Ind Crops Prod 95:608–614

    Article  Google Scholar 

  • Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue and Organ Culture 35(1):1–35

    Article  CAS  Google Scholar 

  • Bae K, Yoo K, Lee H, Yoon E (2012) Callus induction and plant regeneration of Iris dichotoma Pall. In endangered species. J plant Biotechnol 39:182–188

    Article  Google Scholar 

  • Bae K, Yoo K, Lee M, Jeong J, Choi Y, Yoon E (2013) Plant regeneration from callus of Iris odaesanensis Y. N. Lee native to Korea via organogenesis. J plant Biotechnol 40:163–168

    Article  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Bano AS, Khattak AM, Basit A, Alam M, Shah ST, Ahmad N, Qadir Gilani SA, Ullah I, Anwar S, Mohamed HI (2022) Callus induction, proliferation, enhanced secondary metabolites production and Antioxidants Activity of Salvia moorcroftiana L. as Influenced by Combinations of Auxin, Cytokinin and Melatonin. Brazilian Archives of Biology and Technology 65:e22210200

    Article  CAS  Google Scholar 

  • Boltenkov EV, Rybin VG, Zarembo EV (2004) Specific features of cultivation of Iris ensata Thunb. Callus Tissue Applied Biochemistry and Microbiology 40(2):206–212

    Article  CAS  Google Scholar 

  • Boltenkov EV, Mironova LN, Zarembo EV (2007) Effect of Phytohormones on Plant Regeneration in Callus Culture of Iris ensata Thunb. Izvestiia Akademii nauk. Seriia biologicheskaia /. Rossiiskaia akademiia nauk 34(5):539–544 (In Russian)

    Google Scholar 

  • Boŝnjak Mihovilović A, Barić M, Bolarić S, Safner T, Ćurković-Perica M, Mitić B, Bohanec B, Habuš Jerčić I, Kereša S (2019) Plant regeneration and clonal fidelity assessment of subendemic species Iris illyrica Tomm. Originated from Croatia. J Cent Eur Agric 20(1):415–430

    Article  Google Scholar 

  • Cerasela P, Simona L, Giancarla V, Marcel D, Alexandru L, Iuliana C, Maria B (2014) Genetic stability of micropropagated Iris germanica L. varieties assessed by RAPD markers. Romanian Biotechnol Lett 19(5):9778–9784

    CAS  Google Scholar 

  • Chen R, Zhang M, Lu J, Zhang X, da Silva JAT, Ma G (2014) Shoot organogenesis and somatic embryogenesis from leaf explants of Valeriana jatamansi. Hortic Technol 165:392–397

    Article  CAS  Google Scholar 

  • Da Silva DPC, Ozudogru EA, Dos Reis MV, Lambardi M (2018) In vitro conservation of ornamental plants. Ornam Hortic 24(1):28–23

    Article  Google Scholar 

  • Diaz LP, Namur JJ, Bollati SA, Arce OEA (2010) Acclimatization of Phalaenopsis and Cattleya obtained by micropropagation. Revista Colombiana de Biotecnología XII(2):27–40

    Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. Vitro Cell Dev Biology 47:5–16

    Article  Google Scholar 

  • Fatahi Moghadam J, Hamid Oghli Y, Fotohi Ghazvini R, Ghasem Nezhad M, Bakhshi D (2011) Assessment of physicochemical and anti-oxidant of crest in some joinary cultivars of citrus. J Hortic Sci 25(2):211–217

    Google Scholar 

  • Fatima Z, Mujib A, Fatima S, Arshi A, Umar S (2009) Callus induction, biomass growth and plant regeneration in Digitalis lanata Ehrh: influence of plant growth regulators and carbohydrates. Turkish J Bot 33(6):393–405

    Google Scholar 

  • Fazeli-Nasab B (2018) THE effect of explant, BAP and 2,4-D on callus induction of Trachyspermum ammi. Potravinarstvo Slovak Journal of Food Sciences 12(1):578–586

    Article  Google Scholar 

  • Güner A (2012) Iris L –. In: Güner A et al (eds) Turkey plants list (vascular plants). Nezahat Gökyiğit Botanical Garden and Flora Research Association Publication, İstanbul, pp 535–540

    Google Scholar 

  • Hussain A, Qarshi IA, Nazir H, Ullah I (2012) Plant tissue culture: current status and opportunities. Recent advances in plant in vitro culture. IntechOpen 17:1–28

    Google Scholar 

  • Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalali N, Naderi R, Babalar M, Mirmasoumi M (2010) Somatic embryogenesis in Cyclamen with two Explants and Combinations of Plant Growth regulators. Hortic Environ Biotechnol 51:445–448

    CAS  Google Scholar 

  • Jéhan H, Courtois D, Ehret C, Lerch K, Petiard V (1994) Plant regeneration of Iris pallida Lam. And Iris germanica L. via somatic embryogenesis from leaves, apices and young flowers. Plant Cell Rep 13:671–675

    Article  PubMed  Google Scholar 

  • Jevremović S, Subotić A, Radojević LJ (2006) In vitro morphogenesis of dwarf irises. In: Teixeira da Silva J (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol II. Global Science Books, London, pp 551–557

    Google Scholar 

  • Jevremović S, Subotić A, Trifunović M, Nikolić M (2009) Plant Regeneration of Southern Adriatic Iris by somatic embryogenesis. Archives of Biological Sciences Belgrade 61(3):413–418

    Article  Google Scholar 

  • Jevremović S, Jeknić Z, Subotić A (2013) In: Lambardi M, Ozudogru EA, Jain SM (eds) Micropropagation of irises. Protocols for micropropagation of selected economically-important horticultural plants. Humana Press-Springer, Berlin/ Heidelberg, Germany, pp 291–304

    Google Scholar 

  • Jevremović S, Lojić M, Jeknić Z, Trifunović-Momčilov M, Antonić D, Petrić M, Subotić A, Radojević L (2015) In vitro propagation of Iris reichenbachii Heuff. and clonal fidelity of regenerated plants. Bot serbica 39(2):129–136

    Google Scholar 

  • Kafi M, Borzoi A, Salehi M, Kamandi A, Masoumi A, Nabati J (2009) Physiology of environmental stresses in plants. Jahad Daneshgahi of Mashhad Press,Mashhad.p 504

  • Kereša S, Mihovilović A, Ćurković-Perica M, Mitić B, Barić M, Vršek I, Marchetti S (2009a) In Vitro Regeneration of the Croatian Endemic Species Iris Adriatica Trinajstić Ex Mitić. Acta Biologica Cracoviensia Series Botanica 51(2):7–12

    Google Scholar 

  • Khawar KM, Sarýhan E, Sevimay C, Cocu S (2005) Adventitious shoot regeneration and micropropagation of Plantago lanceolata L. Period Biology 107:113–116

    Google Scholar 

  • Kim TD, Ahn CH, Bae KH, Choi YE (2009) The embryogenic competency and morphological changes during somatic embryogenesis in Iris pseudacorus. Plant Biotechnol Rpt 3:251–257

    Article  Google Scholar 

  • Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep 19:551–557

    Article  CAS  PubMed  Google Scholar 

  • Krtar ES, Balkaya A, Okumus NO (2010) Effects of polymers and growth mediums on in vitro plantlets of Winter Squash (Cucurbita maxima Duch. Ex Lam.) And Pumpkin (Cucurbita moschata Duch. Ex Poir.) In acclimatization. Annals of Biological Research 1(2):148–154

    Google Scholar 

  • Liu J, Feng H, Ma Y, Ma Y, Zhang L, Han H, Huang H (2018) Effects of different plant hormones on callus induction and plant regeneration of miniature roses (Rosa hybrida L). Hortic Int J 22(4):201–206

    Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, SANTOS C (2007) Two New Nuclear isolation buffers for Plant DNA Flow Cytometry: a test with 37 species. Ann Botany 100:875–888. https://doi.org/10.1093/annbot/mcm152

    Article  CAS  Google Scholar 

  • Manrique-Trujillo S, Iaz DD´, Reano R, Ghislain M, Kreuze J (2013) Sweetpotato plant regeneration via an improved somatic embryogenesis protocol. Sci Hort 161:95–100

    Article  CAS  Google Scholar 

  • Mathew B (2001) Some aspects of the Juno group of irises. Proc Int Iridaceae Conf Ann Botanici Fennic 1:113–122

    Google Scholar 

  • Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Chap 2. Complementary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant Genetic: Conservation The In Situ Approach. Chapman and Hall, London, UK, p 15

    Chapter  Google Scholar 

  • Memariani F, Joharchi MR (2017) Iris ferdowsii (Iridaceae), a new species of section Regelia from northeast of Iran. Phtotaxa 291(3):192200

    Google Scholar 

  • Neibaur I, Gallo M, Altpeter F (2008) The effect of auxin type and cytokinin concentration on callus induction and plant regeneration frequency from immature inflorescence segments of seashore paspalum (Paspalum vaginatum Swartz). In Vitro Cell Dev Biol Plant 44:480–486

    Article  CAS  Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tiss Organ Cult 104:329–341. https://doi.org/10.1007/s11240-011-9918-6

    Article  Google Scholar 

  • Oushib Nataj M, Shekarchi H, Keshavarzi M, Akbarzadeh M (2011) Autecology of Lolium perenne L. in Mazandaran province. Iran J Range Desert Reseach 18(1):90–106

    Google Scholar 

  • Pasternak T, Miskolczi P, Ayaydin F, Mészáros T, Dudits D, Fehér A (2000) Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa. Plant Growth Regul 2:129–141

    Article  Google Scholar 

  • Pernisova M, Klíma P, Horák J, Válková M, Malbeck J, Souček P, Reichman P, Hoyerová K, Dubová J, Friml J, Zažímalová E, Hejátko J (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci USA 106(9):3609–3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman NNA, Rosli R, Kadzimin S, Hakiman M (2019) Effects of auxin and cytokinin on callus induction in Catharanthus roseus (L.) G. Don. Fundamental and Applied Agriculture 4(3):928–932

    Google Scholar 

  • Ranjan R, Purohit SS, Prasad V (2003) Plant Hormones: Action and Application, Agrobios (India)

  • Reed BM, Sarasan V, Kane M, Bunn E, Pence VC (2011) Biodiversity conservation and conservation biotechnology tools. In Vitro Cellular & Developmental Biology - Plant. 47: 1–4

  • Rosspopoff O, Chelysheva L, Saffar J, Lecorgne L, Gey D, Caillieux E, Colot V, Roudier F, Kilson P, Berthomé R, Da Costam M, Rech P (2017) Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development. Development 144(7):1187–1200

    CAS  PubMed  Google Scholar 

  • Sarasan V, Cripps R, Ramsay MM, Atherton C, Mcmichen M, Prendergast G, Rowntree JK (2006) Conservation in vitro of threatened plants—Progress in the past decade. In Vitro Cell Dev Biol 42:206–214

    Article  Google Scholar 

  • Shibli RA, Ajlouni MM (2000) Somatic embryogenesis in the endemic black iris. Planr Cell Tissue Organ Cult 61:15–21

    Article  CAS  Google Scholar 

  • Smith RH (2013) Callus induction. Plant tissue culture, 3th edn. Academic Press, Springer, Berlin/Heidelberg, Germany, pp 63–79

    Chapter  Google Scholar 

  • Soltanipol MM, Mohammadi A, Rahnama H, Abbaszadeh B (2011) Callusogenesis investigation of lemon balm (Melissa officinalis L). J Agron Plant Breed 7(1):45–54

    Google Scholar 

  • Stanišić M, Raspor M, Ninkovic S, Milosevic S, Calic D, Bohanec B, Trifunovic M, Petric M, Subotic A, Jevremovic S (2015) Clonal fidelity of Iris sibirica plants regenerated by somatic embryogenesis and organogenesis in leaf-base culture-RAPD and flow cytometer analyses. South Afr J Bot 96:42–52

    Article  Google Scholar 

  • Tisserat B, Murashige T (1977) Effects of ethephon, ethylene and 2, 4-dichlorophenoxyacetic acid on asexual embryogenesis in vitro. Plant Physiol 60(3):437–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuji Y, Kuriyama K (2003) Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot (Daucus carota). J Plant Physiol 160(2):133–141

    Article  CAS  PubMed  Google Scholar 

  • Tulika M (2015) Protocol establishment for multiplication and regeneration of ‘Holy Basil’ (O. sanctum Linn.). An important medicinal plant with high religious value in India. J Med Plants 3(4):16–19

    Google Scholar 

  • Xu L, Huang S, Han Y, Yuan H (2015) Plant Regeneration of Iris germanica L. from shoot Apexes via an improved somatic embryogenesis protocol. HortScience 50(7):1045–1048

    Article  CAS  Google Scholar 

  • Zhong JJ (1995) Recent advances in cell cultures of Taxus ssp. for production of the natural anticancer drug Taxol. Plant Tissue Culture Biotechnol, 1(76)

  • Zhou LG, Wu JY (2006) Development and application of medicinal plants tissue cultures for production of drugs and herbal medicines in China. Nat Prod Rep 23:789–810

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deepest gratitude to the Academic Center for Education, Culture and Research of Khorasan Razavi for providing laboratory services.

Funding

The financial cost of this research was provided by Ferdowsi University of Mashhad (Project number 47959) and Iran national Science foundation Science deputy of presidency (Project number 97015112).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in designing the research and consulting in writing the article, MK consulting during the research, NS in conducting the research, data analysis, writing the draft and the final file of the article.

Corresponding author

Correspondence to Ali Tehranifar.

Ethics declarations

Conflict of interest

The authors declare that is no conflict of interest among each of the contributing factors.

Additional information

Communicated by Yan Liu.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, N., Tehranifar, A., Kharrazi, M. et al. Micropropagation of endangered Iris ferdowsii Joharchi & Memariani through callus induction. Plant Cell Tiss Organ Cult 154, 595–604 (2023). https://doi.org/10.1007/s11240-023-02535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02535-1

Keywords

Navigation