Skip to main content

Advertisement

Log in

Artificial neural network and decision tree facilitated prediction and validation of cytokinin-auxin induced in vitro organogenesis of sorghum (Sorghum bicolor L.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In this study, in vitro regeneration protocol of sorghum (Sorghum bicolor) was successfully established by using direct organogenesis from a mature zygotic embryo explant. The used basal medium encompassed Murashige and Skoog medium (MS) supplemented with 2–4 mg/L Benzylaminopurine (BAP) alone or with 0.25 mg/L Indole butyric acid (IBA) or Naphthalene acetic acid (NAA). Results demonstrated a significant impact of cytokinin-auxin on shoot count (1.24–3.46) and shoot length (2.80–3.47 cm). Maximum shoot count (3.46) and shoot length (3.97 cm) were achieved on the MS medium enriched with 2 mg/L BAP + 0.25 mg/L NAA and 2.0 mg/L BAP, respectively. To ascertain the impact of BAP alone, BAP + IBA, and BAP + NAA, the data were also analyzed by using a factorial regression model. Pareto chart and normal plots were used to check either the positive or negative impact of input variables on output variables. To further explore the association between BAP + IBA and BAP + NAA on shoot count and shoot length, contour and surface plots were also built. Three different artificial intelligence-based models along with four different performance metrics were utilized to validate the predicted results. Multilayer perceptron (MLP) model performed more efficiently (R2 = 0.799 for shoot count and R2 = 0.831 for shoot length) as compared to the decision tree-based algorithms of random forest (RF) – (R2 = 0.779 for shoot count and R2 = 0.786 for shoot length) and extreme gradient boost (XGBoost) – (R2 = 0.768 for shoot count and R2 = 0.781 for shoot length). As plant tissue culture protocol is a powerful tool for genetic engineering and genome editing of crops, integration of different artificial intelligence-based models can lead to improvement of sorghum with the aid of biotechnological tools.

Graphical abstract

Key message

  • Optimization of In vitro whole plant regeneration of sorghum using mature zygotic embryo explant and cytokinin-auxin combination

  • Data analysis through ANOVA, factorial regression anlaysis and machine learning

  • Presentation of data via Pareto charts, standarized plots, contour plots and surface plots

  • Better performance of ANN-based MLP model compared to decision tree based RF and XGBoost model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The whole datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ANNs:

Artificial neural networks 

ANOVA:

Analysis of variance 

XGBoost:

Extreme Gradient Boosting 

LOO-CV:

Leave-one-out cross validation 

ML:

Machine learning 

MLP:

Multilayer Perceptron 

MS:

Murashige and Skoog Medium 

RF:

Random Forest 

References

  • Aasim M, Akin F, Ali SA et al (2023a) Artificial neural network modeling for deciphering the in vitro induced salt stress tolerance in chickpea (Cicer arietinum L). Physiol Mol Biol Plants 29:289–304

    CAS  PubMed  Google Scholar 

  • Aasim M, Ali SA, Aydin S et al (2023b) Artificial intelligence–based approaches to evaluate and optimize phytoremediation potential of in vitro regenerated aquatic macrophyte Ceratophyllum demersum L. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-25081-3

    Article  Google Scholar 

  • Aasim M, Ali SA, Bekiş P, Nadeem MA (2022a) Light-emitting diodes induced in vitro regeneration of Alternanthera reineckii mini and validation via machine learning algorithms. Vitr Cell Dev Biol 58:816–825

    Article  CAS  Google Scholar 

  • Aasim M, Katirci R, Baloch F et al (2022b) Innovation in the breeding of common bean through a combined approach of in vitro regeneration and machine learning algorithms. Front Genet 13:897696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aasim M, Katırcı R, Akgur O et al (2022c) Machine learning (ML) algorithms and artificial neural network for optimizing in vitro germination and growth indices of industrial hemp (Cannabis sativa L). Ind Crops Prod 181:114801

    Article  Google Scholar 

  • Aasim M, Sahin-Demirbag N, Khawar KM et al (2011) Direct axillary shoot regeneration from the mature seed explant of the hairy vetch (Vicia villosa Roth). Arch Biol Sci 63:757–762. https://doi.org/10.2298/ABS1103757A

    Article  Google Scholar 

  • Abbas F, Afzaal H, Farooque AA, Tang S (2020) Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy 10:1046

    Article  Google Scholar 

  • Aggarwal CC (2018) Neural networks and deep learning. Springer, Cham. https://doi.org/10.1007/978-3-319-94463-0

  • Ahmad FI, Wagiran A, Abd Samad A et al (2016) Improvement of efficient in vitro regeneration potential of mature callus induced from malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi J Biol Sci 23:S69–S77

    Article  Google Scholar 

  • Ahmar S, Gill RA, Jung K-H et al (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21:2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed RI, Rehman SU, Akhtar HL, Khan AM, Mahmood K, Ahmad RT, Anum W (2022) Optimization of in vitro responses of various explants sources in sorghum (Sorghum bicolor). Asian J Agric & Biol. https://doi.org/10.35495/ajab.2021.02.102

  • Alanagh EN, Garoosi G, Haddad R et al (2014) Design of tissue culture media for efficient prunus rootstock micropropagation using artificial intelligence models. Plant Cell, Tissue Organ Cult 117:349–359

    Article  CAS  Google Scholar 

  • Andiku C, Shimelis H, Laing M et al (2021) Assessment of sorghum production constraints and farmer preferences for sorghum variety in Uganda: implications for nutritional quality breeding. Acta Agric Scand Sect B—Soil Plant Sci 71:620–632

    Google Scholar 

  • Arab MM, Yadollahi A, Eftekhari M et al (2018) Modeling and optimizing a new culture medium for in vitro rooting of G× N15 Prunus rootstock using artificial neural network-genetic algorithm. Sci Rep 8:1–18

    Article  CAS  Google Scholar 

  • Arab MM, Yadollahi A, Shojaeiyan A, Ahmadi H (2016) Artificial neural network genetic algorithm as powerful tool to predict and optimize in vitro proliferation mineral medium for G× N15 rootstock. Front Plant Sci 7:1526

    Article  PubMed  PubMed Central  Google Scholar 

  • Baskaran P, Jayabalan N (2005) In vitro plant regeneration and mass propagation system for Sorghum bicolor-a valuable major cereal crop. J Agric Technol 1:345–363

    Google Scholar 

  • Baskaran P, Rajeswari B, Jayabalan N (2006) Development of an in vitro regeneration system in Sorghum [Sorghum bicolor (L.) Moench] using root transverse thin cell layers (tTCLs). Turk J Botany 30:1–9

    Google Scholar 

  • Chen T, Guestrin C (2016) XGBoost. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA, pp 785–794

  • Dreger M, Mól R, Deja A et al (2019) Improved plant regeneration in callus cultures of Sorghum bicolor (L.) Moench. Vitr Cell Dev Biol 55:190–198

    Article  CAS  Google Scholar 

  • Dutta N (2021) Use of Sorghum/Jowar for various purposes in different states of India. Int J Mod Agric 10:2792–2801

    Google Scholar 

  • Earl C, Belitz MW, Laffan SW et al (2021) Spatial phylogenetics of butterflies in relation to environmental drivers and angiosperm diversity across North America. Iscience 24:102239

    Article  PubMed  PubMed Central  Google Scholar 

  • Elango D, Sandoya G, Chopra S (2021) Techniques and tools of modern plant breeding. In: Ricroch A, Chopra S, Kuntz M (eds) Plant Biotechnology. Springer, Cham, pp 17–26

    Chapter  Google Scholar 

  • Farhadi S, Salehi M, Moieni A et al (2020) Modeling of paclitaxel biosynthesis elicitation in Corylus avellana cell culture using adaptive neuro-fuzzy inference system-genetic algorithm (ANFIS-GA) and multiple regression methods. PLoS ONE 15:1–16. https://doi.org/10.1371/journal.pone.0237478

    Article  CAS  Google Scholar 

  • Grootboom AW, OKennedy MM, Mkhonza NL et al (2008) In vitro culture and plant regeneration of sorghum genotypes using immature zygotic embryos as explant source. Int J Bot 4:450–455

    Article  CAS  Google Scholar 

  • Hesami M, Condori-Apfata JA, Valencia MV, Moham M (2020) Application of artificial neural network for modeling and studying in vitro genotype-independent shoot regeneration in wheat. Appl Sci 10:1–10. https://doi.org/10.3390/APP10155370

    Article  Google Scholar 

  • Hesami M, Jones AMP (2021) Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm. Appl Microbiol Biotechnol 105:5201–5212

    Article  CAS  PubMed  Google Scholar 

  • Hesami M, Naderi R, Tohidfar M (2019) Modeling and optimizing in vitro sterilization of chrysanthemum via multilayer perceptron-non-dominated sorting genetic algorithm-II (MLP-NSGAII). Front Plant Sci 10:1–13. https://doi.org/10.3389/fpls.2019.00282

    Article  Google Scholar 

  • Hodges HE, Walker HJ, Cowieson AJ et al (2021) Latent anti-nutrients and unintentional breeding consequences in australian Sorghum bicolor varieties. Front Plant Sci 12:625260

    Article  PubMed  PubMed Central  Google Scholar 

  • Katirci R (2015) S statistical approach to optimizing a Zn–Ni bath containing ED and TEA. Surf Rev Lett 22:1550015

    Article  Google Scholar 

  • Katırcı R, Yılmaz EK, Kaynar O, Zontul M (2021) Automated evaluation of Cr-III coated parts using Mask RCNN and ML methods. Surf Coat Technol 422:127571

  • Keijok WJ, Pereira RHA, Alvarez LAC et al (2019) Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  • Kendir H, Sahin-Demirbag N, Aasim M, Khawar KM (2009) In vitro plant regeneration from turkish Narbon Vetch (Vicia narbonensis L. var. Narbonensis L). Afr J Biotechnol 8:614–618

    CAS  Google Scholar 

  • Kiondo F, Feyissa T, Ndakidemi PA et al (2014) Micropropagation of Dalbergia melanoxylon Guill. & Perr.: a threatened tree species. Am J Res Comm 2:43–52

    Google Scholar 

  • Kirtis A, Aasim M, Katırcı R (2022) Application of artificial neural network and machine learning algorithms for modeling the in vitro regeneration of chickpea (Cicer arietinum L.). Plant Cell. Tissue Organ Cult 150:141–152

    Article  CAS  Google Scholar 

  • Kul M, Oskay KO, Erden F et al (2020) Effect of process parameters on the electrodeposition of zinc on 1010 steel: Central composite design optimization. Int J Electrochem Sci 15:9779–9795

    Article  Google Scholar 

  • Kumlay AM, Arslan N, Kaya C (2014) Farklı Fotoperiyot Şartlarında in vitro olarak Yetiştirilen patates (Solanum tuberosum L.)’lerde BAP’ın NAA ve IBA ile Birlikte Mikro Yumru Oluşturma Üzerine Etkileri. Iğdır Üni Fen Bilim Enst Der/Iğdır. Univ J Inst Sci Tech 4:73–82

    Google Scholar 

  • Lewis CD (1982) Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann, London

    Google Scholar 

  • Malik SI, Rashid H, Yasmin T, Minhas NM (2004) Plant regeneration by somatic embryogenesis from callus of mature seed explants of bread wheat (Triticum aestivum L.). Pakistan J Bot 36:629–634

  • Mallu TS, Mutinda S, Githiri SM et al (2021) New pre-attachment Striga resistant sorghum adapted to african agro‐ecologies. Pest Manag Sci 77:2894–2902

    Article  CAS  PubMed  Google Scholar 

  • Mirza K, Aasim M, Katırcı R et al (2022) Machine learning and artificial neural networks-based approach to model and optimize ethyl methanesulfonate and sodium azide induced in vitro regeneration and morphogenic traits of water hyssops (Bacopa monnieri L). J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10808-w

    Article  Google Scholar 

  • Mishra A, Khurana P (2003) Genotype dependent somatic embryogenesis and regeneration from leaf base cultures of Sorghum bicolor. J Plant Biochem Biotechnol 12:53–56

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

  • Myo EM, Ge B, Ma J et al (2019) Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiol 19:1–14

    Article  CAS  Google Scholar 

  • Niazian M, Niedbała G (2020) Machine learning for plant breeding and biotechnology. Agriculture 10:436

    Article  CAS  Google Scholar 

  • Niazian M, Noori SAS, Galuszka P et al (2017) Genetic stability of regenerated plants via indirect somatic embryogenesis and indirect shoot regeneration of Carum copticum L. Ind Crops Prod 97:330–337

    Article  CAS  Google Scholar 

  • Niazian M, Sadat-Noori SA, Abdipour M et al (2018) Image processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in ajowan (Trachyspermum ammi (L.) Sprague). Vitr Cell Dev Biol 54:54–68

    Article  Google Scholar 

  • Niazian M, Shariatpanahi ME (2020) In vitro-based doubled haploid production: recent improvements. Euphytica 216:1–21

    Article  Google Scholar 

  • Omer RA, Suliman S, Beshir MM (2021) Regeneration of sorghum through tissue culture techniques. Int J Genet Eng 9:16–20

    Google Scholar 

  • Pacher M, Puchta H (2017) From classical mutagenesis to nuclease-based breeding–directing natural DNA repair for a natural end‐product. Plant J 90:819–833

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pavlov YL (2019) Random forests. In: Text mining with machine learning: Principles and Techniques (Eds) Žižka J, Dařena F, Svoboda A. Crc Press. https://doi.org/10.1201/9780429469275-8

  • Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in {P}ython. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Pennells J, Cruickshank A, Chaléat C et al (2021) Sorghum as a novel biomass for the sustainable production of cellulose nanofibers. Ind Crops Prod 171:113917

    Article  CAS  Google Scholar 

  • Pola S, Saradamani N, Ramana T (2007) Enhanced shoot regeneration in tissue culture studies of Sorghum bicolor. J Agric Technol 3:275–286

    Google Scholar 

  • Qureshi MA, Shafqat W, ud Din S, et al (2021) Effect of different plant growth regulators on in vitro regeneration of mango: a report. J Glob Innov Agric Sci 9:95–98

    Google Scholar 

  • Ramazan K, Esma S, Belkıs U (2015) Statistical optimisation of organic additives for maximum brightness and brightener analysis in a nickel electroplating bath. Trans IMF 93:89–96

    Article  CAS  Google Scholar 

  • Riaz A, Kanwal F, Börner A et al (2021) Advances in genomics-based breeding of barley: molecular tools and genomic databases. Agronomy 11:894

    Article  CAS  Google Scholar 

  • Sai NK, Visarada K, Lakshmi YA et al (2006) In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Rep 25:174–182

    Article  CAS  Google Scholar 

  • Salehi M, Farhadi S, Moieni A et al (2020) Mathematical modeling of growth and paclitaxel biosynthesis in corylus avellana cell culture responding to fungal elicitors using multilayer perceptron-genetic algorithm. Front Plant Sci 11:1–12. https://doi.org/10.3389/fpls.2020.01148

    Article  Google Scholar 

  • Salehi M, Farhadi S, Moieni A et al (2021) A hybrid model based on general regression neural network and fruit fly optimization algorithm for forecasting and optimizing paclitaxel biosynthesis in Corylus avellana cell culture. Plant Methods 17:1–13

    Article  Google Scholar 

  • Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM (2021) Induced genetic variations in fruit trees using new breeding tools: food security and climate resilience. Plants 10:1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamenković OS, Siliveru K, Veljković VB et al (2020) Production of biofuels from sorghum. Renew Sustain Energy Rev 124:109769

    Article  Google Scholar 

  • Sudhakararao P (2011) Leaf discs as a source material for plant tissue culture studies of Sorghum bicolor (L.) Moench. Not Sci Biol 3:70–78

    Article  Google Scholar 

  • Van Rossum G, Drake FL (2009) Python 3 reference manual. CreateSpace, Scotts Valley, CA

    Google Scholar 

  • Visarada K, Sai Kishore N, Balakrishna D, Rao SV (2003) Transient GUS expression studies in sorghum to develop a simple protocol for Agrobacterium mediated genetic transformation [Sorghum bicolor (L.) Moench]. J Genet Breed 57:147–154

  • Webb GI, Sammut C, Perlich C et al (2011) Leave-one-out cross-validation. Encyclopedia of machine learning. Springer US, Boston, MA, pp 600–601

    Chapter  Google Scholar 

  • Weiss T, Zhao J, Hu R et al (2022) Production of distilled spirits using grain sorghum through liquid fermentation. J Agric Food Res 9:100314

    CAS  Google Scholar 

  • Zapata C, Srivatanakul M, Park S-H et al (1999) Improvements in shoot apex regeneration of two fiber crops: cotton and kenaf. Plant Cell Tissue Organ Cult 56:185–191

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MA: Conceptualization, Methodology; Formal analysis; Writing - Original Draft, Supervision, Project administration, SAA: Formal analysis, Writing - Review & Editing, Visualization, AA: Investigation, Data Curation, MTA: Investigation, Data Curation, MAN: Original Draft Writing - Review & Editing, FSB: Material, Article control, Review & Editing.

Corresponding author

Correspondence to Muhammad Aasim.

Ethics declarations

Conflict of interest

There is no conflict of interest. All authors read the manuscript and showed their willingness to publish the manuscript.

Additional information

Communicated by Alison M.R. Ferrie.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aasim, M., Ali, S.A., Altaf, M.T. et al. Artificial neural network and decision tree facilitated prediction and validation of cytokinin-auxin induced in vitro organogenesis of sorghum (Sorghum bicolor L.). Plant Cell Tiss Organ Cult 153, 611–624 (2023). https://doi.org/10.1007/s11240-023-02498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02498-3

Keywords

Navigation