Skip to main content
Log in

TaLBD1, a LOB transcription factor gene in T. aestivum, confers plant adaptation to low-N stress via modulating N acquisition-associated processes

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript
  • 2 Altmetric

Abstract

Distinct members of transcription factor (TF) families act as the critical mediators in plant low-N stress response by regulating transcription of the stress defensive-associated genes. In this study, TaLBD1, a member of the Lateral Organ Boundary (LOB) TF family in Triticum aestivum, was characterized for its role in modulating the plant adaptation to N deprivation condition. TaLBD1 protein harbors the conserved domains that are shared by the plant LOB TF proteins and targets onto nucleus after endoplasmic reticulum (ER) assortment. The transcripts of TaLBD1 were found to be responsive to N starvation stress in both roots and leaves, as shown by their significantly upregulated transcripts during a 27 h regime of N starvation treatment. The tobacco lines with overexpression of TaLBD1 indicated that it can confer to plants an improved phenotype, root system architecture (RSA), biomass, and N accumulation under N starvation treatment. The expression levels of NtRNT2.4 and NtPIN6, two genes encoding nitrate transporter (NRT) and PIN-FORMED proteins in N. tabacum, were found to be significantly upregulated in expression in the N-deprived transgenic lines overexpressing TaLBD1. Knockdown expression on NtRNT2.4 and NtPIN6 led to plants for an alleviation on the N accumulation and RSA establishment relative to WT, suggesting that they are involved in the regulation of plant and RSA formation, respectively. Transcriptome analyses revealed a number of up- and down- regulated genes in the N-pdeprived transgenic lines with TaLBD1 overexpression, which are involved in biological processes associated with signal transduction, transcription, protein biosynthesis, primary or secondary metabolism, and stress defensiveness. Our results together suggested that TaLBD1 positively regulates plant N starvation tolerance through improvement of N uptake and RSA formation. It is valuable in efforts for molecular engineering the high N use efficiency (NUE) cultivars of cereal crops.

Key message

The member of the LOB transcription factor family TaLBD1 in T. aestivum confers plant tolerance to N starvation stress via modulating N uptake and RSA establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Adamowski M, Friml J, Adamowski M et al (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27(1):20–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300

    Google Scholar 

  • Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 15:2114–2120

    Article  Google Scholar 

  • Borghi L, Bureau M, Simon R (2007) Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity. Plant Cell 19:1795–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO: TermFinder-open sources software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20(18):3710–3715

    Article  CAS  PubMed  Google Scholar 

  • Chalfun-Junior A, Franken J, Mes JJ, Marsch-Martinez N, Pereira A, Angenent GC (2005) ASYMMETRIC LEAVES2-LIKE1 gene, a member of the AS2/LOB family, controls proximal–distal patterning in Arabidopsis petals. Plant Mol Biol 57:559–575

    Article  CAS  PubMed  Google Scholar 

  • Chanderbali AS, He F, Soltis PS, Soltis DE (2015) Out of the water: origin and diversification of the LBD gene family. Mol Biol Evol 32:1996–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Moreira B, Sebastian A, Contreras-Moreira B et al (2016) FootprintDB: analysis of plant cis-regulatory elements, transcription factors, and binding interfaces. Methods Mol Biol 1482:259–277

    Article  CAS  PubMed  Google Scholar 

  • Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol 1:235–239

    Article  CAS  PubMed  Google Scholar 

  • Del Pozo JC, Manzano C, Del Pozo JC et al (2014) Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action. J Exp Bot 65(10):2617–2632

    Article  PubMed  Google Scholar 

  • Dharmasiri S, Estelle M (2002) The role of regulated protein degradation in auxin response. Plant Mol Biol 49:401–408

    Article  CAS  PubMed  Google Scholar 

  • Dozmorov I, Centola M (2003) An associative analysis of gene expression array data. Bioinformatics 19:204–211

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Scheres B, Du Y et al (2018) Lateral root formation and the multiple roles of auxin. J Exp Bot 69(2):155–167

    Article  CAS  PubMed  Google Scholar 

  • Evans MMS (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal P, Manzoor MM, Vishwakarma RA, Sharma D, Dhar MK, Gupta S, Goyal P et al (2020) A comprehensive transcriptome-wide identification and screening of WRKY gene family engaged in abiotic stress in Glycyrrhiza glabra. Sci Rep 10(1):373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Zhao X, Liu X, Zhang L, Gu J, Li X, Lu W, Xiao K (2013) Function of wheat phosphate transporter gene TaPHT2;1 in pi translocation and plant growth regulation under replete and limited pi supply conditions. Planta 237:1163–1178

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Li J, Chang W, Zhang L, Cui X, Xiao K (2011) Effects of chromosome substitution on the utilization efficiency of nitrogen, phosphorus, and potassium in wheat. Front Agric China 5:253–261

    Article  Google Scholar 

  • Han Z, Yang T, Guo Y, Cui WH, Yao LJ, Li G, Wu AM, Li JH, Liu LJ, Han Z et al (2021) The transcription factor PagLBD3 contributes to the regulation of secondary growth in Populus. J Exp Bot 72(20):7092–7106

    Article  CAS  PubMed  Google Scholar 

  • Hu QQ, Shu JQ, Li WM, Wang GZ, Hu QQ et al (2021) Role of auxin and nitrate signaling in the development of root system architecture. Front Plant Sci 12:690363

    Article  PubMed  PubMed Central  Google Scholar 

  • Inukai Y, Sakamoto T, Ueguchi-Tanaka MY, Shibata Y, Gomi K, Umemura I et al (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang WH, Sim YM, Koo N, Nam JY, Lee J, Kim N, Jang H, Kim YM, Yeom SI, Kang WH, et al (2020) Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Sci Data 7(1):17

  • Kant S, Bi Y-M, Rothstein SJ et al (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S, Konishi M et al (2010) Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response. Plant J 63(2):269–282

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S, Konishi M et al (2011) Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants. Biochem Biophys Res Commun 411(4):708–713

    Article  CAS  PubMed  Google Scholar 

  • Lebedev VG, Popova AA, Shestibratov KA, Lebedev VG et al (2021) Genetic engineering and genome editing for improving nitrogen use efficiency in plants. Cells 10(12):3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Hou Z, Liao J, Qin Y, Wang L, Wang X, Su W, Cai Z, Fang Y, Aslam M, Cheng Y, Zheng P, Liang J et al (2022) Genome-wide identification and expression analysis of LBD transcription factor genes in passion fruit (Passiflora edulis). Int J Mol Sci 23(9):4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin WC, Shuai B, Springer PS (2003) The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial–abaxial patterning. Plant Cell 15:2241–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Hou H, Zhang Y, Hou X, Lin Y et al (2021) Overexpression of a Pak Choi Gene, BcAS2, causes leaf curvature in Arabidopsis thaliana. Genes (Basel) 12(1):102

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yu J, Ge Y, Qin P, Xu L, Liu W et al (2018) Pivotal role of LBD16 in root and root-like organ initiation. Cell Mol Life Sci 75(18):3329–3338

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marand AP, Chen Z, Gallavotti A, Schmitz RJ, Marand AP et al (2021) A cis-regulatory atlas in maize at single-cell resolution. Cell 184(11):3041–3055

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Iwakawa H, Machida Y, Machida C (2009) Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant J 58:525–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SA, Park KS, Twell D, Park SK (2010) The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. Plant J 64:839–850

    Article  CAS  PubMed  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ori N, Eshed Y, Chuck G, Bowman JL, Hake S (2000) Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127:5523–5532

    Article  CAS  PubMed  Google Scholar 

  • Pandey SK, Kim J, Pandey SK et al (2018) Coiled-coil motif in LBD16 and LBD18 transcription factors are critical for dimerization and biological function in arabidopsis. Plant Signal Behav 13(1):e1411450

    Article  PubMed  Google Scholar 

  • Peng M, Bi YM, Zhu T, Rothstein SJ (2007) Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant Mol Biol 65:775–797

    Article  CAS  PubMed  Google Scholar 

  • Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trend Plant Sci 6:420–425

    Article  CAS  Google Scholar 

  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M et al (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  • Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y (2001) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128:1771–1783

    Article  CAS  PubMed  Google Scholar 

  • Shuai B, Reynaga-Pen˜a CG, Springer PS (2002) The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyano T, Thitamadee S, Machida Y, Chua NH (2008) ASYMMETRIC LEAVES2-LIKE19/ LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/ LBD18 regulate tracheary element differentiation in Arabidopsis. Plant Cell 20:3359–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Lu H, Zhang Q, Wang D, Chen J, Xiao J, Ding X, Li Q, Sun Q et al (2021) Transcriptome sequencing of wild soybean revealed gene expression dynamics under low nitrogen stress. J Appl Genet 62(3):389–404

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Ding C, Li X, Xiao K (2012) Molecular characterization and expression analysis of TaZFP15, a C2H2- type zinc finger transcription factor gene in wheat (Triticum aestivum L.). J Integr Agric 11:31–42

    Article  CAS  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YY, Cheng YH, Chen KE, Tsay YF, Wang YY et al (2018) Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol 69:85–122

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Yoshida H, Matsuoka M, Wang F et al (2021) Making the ‘Green Revolution’ truly green: improving crop nitrogen use efficiency. Plant Cell Physiol 62(6):942–947

    Article  CAS  PubMed  Google Scholar 

  • Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A et al (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J 21:553–562

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Gao F, Li T, Guo H, Zhang L, Fan Y, Chen A, Wang J, Shi F, Shan G, Guo H, Zeng F, Wu J et al (2021) Genome-wide cis-regulatory element based discovery of auxin-responsive genes in higher plant. Genes (Basel) 13(1):24

    Article  PubMed  Google Scholar 

  • Xiong R, Liu S, Considine MJ, Siddique KHM, Lam HM, Chen Y, Xiong R et al (2021) Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: a review. Physiol Plant 172(2):405–418

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2014) Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Sci 229:167–171

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Wang X, Lyu M, Siligato R, Eswaran G, Vainio L, Blomster T, Zhang J, Mähönen AP, Ye L et al (2021) Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Curr Biol 31(15):3365–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong S, Joung JG, Zheng Y, Chen YR, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ (2011) High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harbor Protoc 8:940–949

    Google Scholar 

  • Zhou JJ, Luo J, Zhou JJ et al (2018) The PIN-FORMED auxin efflux carriers in plants. Int J Mol Sci 19(9):2759

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2022YFD1200202), National Natural Science Foundation of China (No. 31872869) and the Science and Technology Planning Project of Hebei Province (No. 216Z6401G).

Author information

Authors and Affiliations

Authors

Contributions

KX designed the research. YZ, CN, TL, LH, and PD conducted the experiment and performed data analysis. KX wrote the paper. All authors contributed to the paper and approved the final manuscript.

Corresponding author

Correspondence to Kai Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Goetz Hensel.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 332.0 kb)

Supplementary material 2 (XLS 730.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ni, C., Li, T. et al. TaLBD1, a LOB transcription factor gene in T. aestivum, confers plant adaptation to low-N stress via modulating N acquisition-associated processes. Plant Cell Tiss Organ Cult 153, 19–35 (2023). https://doi.org/10.1007/s11240-022-02437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02437-8

Keywords

Navigation