Skip to main content
Log in

Copper nanoparticles enhanced surface disinfection, induction and maturation of somatic embryos in tuberous begonias (Begonia × tuberhybrida Voss) cultured in vitro

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The sterilization effectiveness of copper nanoparticles (CuNPs) replaced common disinfectants such as mercury chloride (HgCl2) or calcium hypochlorite (Ca(ClO)2) on different explants (petioles—P, inflorescence—F and stem nodes—S) of ex vitro tuberous begonias (Begonia × tuberhybrida Voss) was investigated. Subsequently, the P, F and S explants were cut transversely into thin cell layer (tTCL) approximately 1 mm in length (P-tTCL, F-tTCL and S-tTCL) and cultured on SE induction medium in order to investigate the effect of disinfectants on somatic embryogenesis, somatic embryo morphology, antioxidant activity (Catalase—CAT and Ascorbate Peroxidase—APX), and carbohydrate content (sugar and starch) of somatic embryos and their subsequent growth. The results showed that CuNPs can replace HgCl2 and Ca(ClO)2 and are effective in surface disinfection of P, F and S explants. CuNPs enhanced embyrogenic callus and somatic embryogenesis of treated explants compared to those on HgCl2 and Ca(ClO)2. CuNP-treated F-tTCL and S-tTCL explants recorded the highest number of somatic embryos (38.00–36.67 embryos, respectively) as well as the percentage of somatic embryos in cotyledon-shape (47.37–49.09%, respectively). Moreover, the antioxidant enzyme activity (CAT and APX) and starch content of somatic embryo clusters derived from CuNPs-treated F-tTCL and S-tTCL explants were higher and the sugar content was lower as compared to those sterilizated with HgCl2 or Ca(ClO)2. Plantlets derived from different different disinfectant treatments showed no difference in morphology, in vitro rooting and acclimatization stages in the greenhouse.

Key message

Surface disinfection efficiency of CuNPs on ex vitro begonia explants compared to those of common disinfectants.

CuNPs effected on somatic embryogenesis, antioxidant activity, carbohydrate content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AgNPs:

Silver nanoparticles

Ca(ClO)2 :

Calcium hypochlorite

CuNPs:

Copper nanoparticles

tTCL:

Explant cut into transverse thin cell layer

P-tTCL:

Petiole explant cut tTCL

F-tTCL:

Inflorescence explant cut tTCL

H2O2 :

Hydrogen peroxide

HgCl2 :

Mercury chloride

NaOCl:

Sodium hypochlorite

SD:

Surface disinfection

S-tTCL:

Stem node explant cut tTCL

CAT:

Catalase

APX:

Ascorbate Peroxidase

EC:

Embyrogenic callus

SE:

Somatic embryos

References

  • Adebomojo AA, AbdulRahaman AA (2020) Surface sterilization of Ocimum seeds and tissues with biosynthesized nanosilver and its effects on callus induction. IOP Conf Ser Mater Sci Eng 805:012024

    Article  CAS  Google Scholar 

  • Ahlawat J, Sehrawat AR, Choudhary R, Yadav SK (2020) Biologically synthesized silver nanoparticles eclipse fungal and bacterial contamination in micropropagation of Capparis decidua (Forsk.) Edgew, A substitute to toxic substances. Indian J Exp Biol 58:336–343

    CAS  Google Scholar 

  • Ahmad SA, Das SS, Khatoon A, Ansari MT, Afzal M, Md H, Nayak AK (2020) Bactericidal activity of silver nanoparticles: a mechanistic review. Mater Sci Technol 3:756–769. https://doi.org/10.1016/j.mset.2020.09.002

    CAS  Google Scholar 

  • Aswathy JM, Murugan K (2019) Micropropagation and genetic fidelity of in vitro grown plantlets of Begonia malabarica Lam. Trop Life Sci Res 30(3):36–58. https://doi.org/10.21315/tlsr2019.30.3.3

    Google Scholar 

  • Aurelia SJ, Aleksandra P, Zygmunt K (2005) Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L. Acta Biol Crac Ser Bot 47(2):145–151

    Google Scholar 

  • Awal A, Taha RM, Hasbullah NA (2008) Induction of Somatic Embryogenesis and Plant Regeneration in Begonia x hiemalis Fotsch. in vitro. J Biol Sci 8(5):920–924. https://doi.org/10.3923/jbs.2008.920.924

    Article  Google Scholar 

  • Bradfield SJ, Kumar P, White JC, Ebbs SD (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intakefrom consumption. Plant Physiol Biochem 110:128–137. https://doi.org/10.1016/j.plaphy.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  • Cangahuala-Inocente GC, Silveira V, Caprestano CA, Floh EIS, Guerra MP (2014) Dynamics of physiological and biochemical changes during somatic embryogenesis of Acca sellowiana. In vitro Cell Dev Biol Plant 50:166–175

    Article  CAS  Google Scholar 

  • Cuong DM, Du PC, Tung HT, Ngan HTM, Luan VQ, Phong TH, Khai HD, Phuong TTB, Nhut DT (2021) Silver nanoparticles as an effective stimulant in micropropagation of Panax vietnamensis—a valuable medicinal plant. Plant Cell Tiss Org Cult 146(3):577–588. https://doi.org/10.1007/s11240-021-02095-2

    Article  CAS  Google Scholar 

  • Deshmukh SP, Patil SM, Mullani SB, Delekar SD (2019) Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C Mater Biol Appl 97:954–965. https://doi.org/10.1016/j.msec.2018.12.102

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhang H, Sun M, Zhao F, Xue T, Xue J (2019) Use of chlorine dioxide to sterilize medium for tissue culture of potato. Sci Rep 9:10232. https://doi.org/10.1038/s41598-019-46795-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espino FJ, Linacero R, Rueda J, Vazquez AM (2004) Shoot regeneration in four Begonia genotypes. Biol Plant 48(1):101–104. https://doi.org/10.1023/B:BIOP.0000024282.01087.a3

    Article  CAS  Google Scholar 

  • Fahmy AH, El-Mangoury K, Ibrahim AS, Muthukrishnan S (2012) Comparative evaluation of different reliable in vitro regeneration of various elite Egyptian wheat cultivars regarding callus induction and regeneration media influence. Res J Agric Biol Sci 8(2):325–335

    Google Scholar 

  • Fernandes B, Dragone G, Abreu AP, Geada P, Teixeira J, Vicente A (2012) Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods. J App Phycol 24:1203–1208. https://doi.org/10.1007/s10811-011-9761-5

    Article  CAS  Google Scholar 

  • Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196(2–3):143–151. https://doi.org/10.1016/0009-8981(91)90067-M

    Article  CAS  PubMed  Google Scholar 

  • Hamad A, Khashan KS, Hadi A (2020) Silver nanoparticles and silver ions as potential antibacterial agents. J Inorg Organomet Polym 30:4811–4828. https://doi.org/10.1007/s10904-020-01744-x

    Article  CAS  Google Scholar 

  • Hanh NT, Tung HT, Khai HD, Luan VQ, Mai NT, Anh TT, Van Le B, Nhut DT (2022) Efficient somatic embryogenesis and regeneration from leaf main vein and petiole of Actinidia chinensis planch. via thin cell layer culture technology. Sci Hortic 298:110986. https://doi.org/10.1016/j.scienta.2022.110986

    Article  CAS  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxiceffects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Envir Sci Proc Impacts 17:177–185

    Article  CAS  Google Scholar 

  • Ibrahim AS (2012) An efficient regeneration system via somatic embryogenesis in some Egyptian durum wheat cultivars mediated highthroughput transformation of durum wheat using Agrobacterium tumefaciens. Res J Agric Biol Sci 8(3):369–384

    CAS  Google Scholar 

  • Ibrahim AS, Fahmy AH, Ahmed SS (2019) Copper nanoparticles elevate regeneration capacity of (Ocimum basilicum L.) plant via somatic embryogenesis. Plant Cell Tiss Org Cult 136(1):41–50. https://doi.org/10.1007/s11240-018-1489-3

    Article  CAS  Google Scholar 

  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33(6):1398–1405. https://doi.org/10.1002/etc.2577

    Article  CAS  PubMed  Google Scholar 

  • Khai HD, Bien LT, Vinh NQ, Dung DM, Nghiep ND, Mai NTN, Tung HT, Luan VQ, Cuong DM, Nhut DT (2021) Alterations in endogenous hormone levels and energy metabolism promoted the induction, differentiation and maturation of Begonia somatic embryos under clinorotation. Plant Sci. https://doi.org/10.1016/j.plantsci.2021.111045

    Article  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135. https://doi.org/10.1021/nn204643g

  • Krivorotova T, Sereikaite J (2014) Determination of fructan exohydrolase activity in the crude extracts of plants. Electron J Biotechnol 17:329–333. https://doi.org/10.1016/j.ejbt.2014.09.005

    Article  Google Scholar 

  • Lai IL, Lin CW, Chen TY, Hu WH (2018) Micropropagation shortens the time to blooming of Begonia montaniformis × Begonia ningmingensis var. bella F1 Progeny. HortSci 53:1855–1861

    Article  CAS  Google Scholar 

  • Landa P (2021) Positive effects of metallic nanoparticles on plants, Overview of involved mechanisms. Plant Physiol Biochem 161:12–24. https://doi.org/10.1016/j.plaphy.2021.01.039

    Article  CAS  PubMed  Google Scholar 

  • Leelavathy S, Deepa Sankar P (2016) Curbing the menace of contamination in plant tissue culture. J Pure Appl Microbiol 10(3):2145–2152

    CAS  Google Scholar 

  • Lei Z, Mingyu S, Xiao W (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79. https://doi.org/10.1007/s12011-007-8028-0

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chang PR, Huang J, Wang Y, Yuan H, Ren H (2013) Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J Nanosci Nanotech 13(8):5561–5567. https://doi.org/10.1166/jnn.2013.7533

    Article  CAS  Google Scholar 

  • Lopez-Lima D, Mtz-Enriquez AI, Carrion G, Basurto-Cereceda S, Pariona N (2021) The bifunctional role of copper nanoparticles in tomato: effective treatment for Fusarium wilt and plant growth promoter. Sci Hortic 277:109810. https://doi.org/10.1016/j.scienta.2020.109810

    Article  CAS  Google Scholar 

  • Mangat BS, Pelekis MK, Cassells AC (1990) Changes in the starch content during organogenesis in in vitro cultured Begonia rex stem explants. Physiol Plant 79:267–274. https://doi.org/10.1111/j.1399-3054.1990.tb06741.x

    Article  CAS  Google Scholar 

  • Mo VT, Cuong LK, Tung HT, Huynh TV, Nghia LT, Khanh CM, Lam NN, Nhut DT (2020) Somatic embryogenesis and plantlet regeneration from the seaweed Kappaphycus striatus. Acta Physiol Plant 42:104. https://doi.org/10.1007/s11738-020-03102-3

    Article  CAS  Google Scholar 

  • Moradpour M, Aziz MA, Abdullah SNA (2016) Establishment of in vitro culture of rubber (Hevea brasiliensis) from field-derived explants, effective role of silver nanoparticles in reducing contamination and browning. J Nanomed Nanotechnol 7:375

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Plant Physiol 1(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    CAS  Google Scholar 

  • Ngan HTM, Tung HT, Le BV, Nhut DT (2020) Evaluation of root growth, antioxidant enzyme activity and mineral absorbability of carnation (Dianthus caryophyllus “Express golem”) plantlets cultured in two culture systems supplemented with iron nanoparticles. Sci Hortic 272:109612. https://doi.org/10.1016/j.scienta.2020.109612

    Article  CAS  Google Scholar 

  • Ngo QB, Dao TH, Nguyen GC, Tran XT, Nguyen TV, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5(1):15–21

    Article  Google Scholar 

  • Nhut DT, Hai NT, Huyen PX, Huong DTQ, Hang NTT, da Silva JAT (2005) Thidiazuron induces high frequency shoot bud formation from Begonia petiole transverse thin cell layer culture. Prop Ornam Plants 5:149–155

    Google Scholar 

  • Nhut DT, Hai NT, Phan MX (2010) A highly efficient protocol for micropropagation of Begonia tuberous. In: Jain SM, Ochatt S (eds) Protocols for in vitro propagation of ornamental plants. Humana Press, Totowa, pp 15–20. https://doi.org/10.1007/978-1-60327-114-1_2

    Chapter  Google Scholar 

  • Pariona N, Mtz-Enriquez AI, Sánchez-Rangel D, Carrión G, Paraguay-Delgado F, Rosas-Saito G (2019) Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv 9:18835–18843. https://doi.org/10.1039/C9RA03110C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Duan D, Xu C, Chen Y, Sun L, Zhang H, Yuan X, Zheng L, Yang Y, Yang J, Zhen X, Chen Y, Shi J (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Envir Pollution 197:99–107. https://doi.org/10.1016/j.envpol.2014.12.008

    Article  CAS  Google Scholar 

  • Peterson RL, Peterson CA, Melville LH (2008) Teaching plant anatomy through creative laboratory exercises. NRC Research Press, Ottawa

    Google Scholar 

  • Pradhan S, Patra P, Mitra S, Dey KK, Basu S, Chandra S, Palit P, Goswami A (2015) Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicit response: A biophysical and biochemical outlook on Vigna radiata. J Agric Food Che 63:2606–2617. https://doi.org/10.1021/jf504614w

    Article  CAS  Google Scholar 

  • Rafiq S, Rather ZA, Bhat RA, Nazki IT, Al-Harbi MS, Banday N, Farooq I, Samra BN, Khan MH, Ahmed AF, Andrabi N (2021) Standardization of in vitro micropropagation procedure of oriental Lilium hybrid Cv.‘Ravenna’. Saudi J Biol Sci 28(12):7581–7587. https://doi.org/10.1016/j.sjbs.2021.09.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafique M, Shaikh AJ, Rasheed R, Tahir MB,Bakhat HF, Rafique MS, Rabbani F (2017) A review on synthesis, characterization and applications of copper nanoparticles using green method. NANO 12:4. https://doi.org/10.1142/S1793292017500436

    Article  CAS  Google Scholar 

  • Rajput VD, Minkina T, Mandzhieva S, Duply N, Fedorenko A, Sushkova S, Tsitsuashvili V (2017) Influence of copper oxide nanoparticle on seed germination and seedling growth. In: Inter Sci Conf “Modern Technologies” Biod Plants, Rostov, Russia, pp 115–116

  • Rowe O, Gallone A (2016) Investigation into the effects of 6-Benzylaminopurine and 1-Naphthaleneacetic acid concentrations on 3 micropropagated Begonia rex ‘Fedor’ explants. In: Rowe O, Gallone A (eds) Proc 2016 Inter Forum—Agr Biol Life Sci, Japan, pp 131–144

  • Saiyidah NH, Ghazali SZ, Sidik NJ, Chia-Chay T, Saleh A (2021) Surface sterilization method for reducing contamination of Clinacanthus nutans nodal explants intended for in-vitro culture. E3S Web of Conferences 306:01004. https://doi.org/10.1051/e3sconf/202130601004

  • Sara K, Yousef G, Ghorbanali N, Roghayeh A, Behzad SK, Mohammad Y (2012) Effect of explant type and growth regulators on in vitro micropropagation of Begonia rex. Inter Res J Appl Bas Sci 3(4):896–901

    CAS  Google Scholar 

  • Savita V, Virk GS, Nagpal A (2010) Effect of explant type and different plant growth regulators on callus induction and plantlet regeneration in Citrus jambhiri Lush. Inter J Sci Tech 5:97–106

    Google Scholar 

  • Shams M, Yildirim E, Agar G, Ercisli S, Dursun A, Ekinci M, Kul R (2018) Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Notulae Bot Hort Agr 46(1):167–172. https://doi.org/10.15835/nbha46110912

    Article  CAS  Google Scholar 

  • Shasthree BT, Coroline VJE, Savitha R (2012) Micropropagation of Bryonopsis laciniosa L. Naud an endangered and medicinally important cucurbit. Adv Plant Sci 25(II):373–376

    CAS  Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H (2017) Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol 262:11–27. https://doi.org/10.1016/j.jbiotec.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  • Stoyanova-Koleva D, Stefanova M, Zhiponova M, Kapchina-Toteva V (2012) Effect of N 6-benzyladenine and indole-3-butyric acid on photosynthetic apparatus of Orthosiphon stamineus plants grown in vitro. Biol Plant 56:607–612. https://doi.org/10.1007/s10535-012-0060-z

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Duong NT, Michi T, Seiichi F (2003) The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Sci Hortic 97:397–410. https://doi.org/10.1016/S0304-4238(02)00219-4

    Article  CAS  Google Scholar 

  • Tung HT, Bao HG, Cuong DM, Ngan HTM, Hien VT, Luan VQ, Vinh BVT, Phuong HTN, Nam NB, Trieu LN, Truong NK, Hoang PND, Nhut DT (2021a) Silver nanoparticles as the sterilant in large-scale micropropagation of chrysanthemum. In vitro Cell Develop Biol Plant. https://doi.org/10.1007/s11627-021-10163-7

    Article  Google Scholar 

  • Tung HT, Thuong TT, Cuong DM, Luan VQ, Hien VT, Hieu T, Nam NB, Phuong HTN, Vinh BVT, Khai HD, Nhut DT (2021b) Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria × ananassa). Plant Cell Tiss Org Cult 145(2):393–403. https://doi.org/10.1007/s11240-021-02015-4

    Article  CAS  Google Scholar 

  • Tung HT, Van HT, Bao HG, Bien LT, Khai HD, Luan VQ, Cuong DM, Phong TH, Nhut DT (2021c) Silver nanoparticles enhanced efficiency of explant surface disinfection and somatic embryogenesis in Begonia tuberous via thin cell layer culture. Vietnam J Biotech 19(2):337–347

    Article  Google Scholar 

  • Valdés-Reyna J, Pinedo-Espinoza J, Cadenas-Pliego G, Ortega-Ortíz H, Hernández-Fuentes A, Juárez-Maldonado A, López-Palestina C (2018) Foliar application of Cu nanoparticles modified the content of bioactive compounds in Moringa oleifera Lam. Agronomy 8:167. https://doi.org/10.3390/agronomy8090167

    Article  CAS  Google Scholar 

  • Velasco Martínez F, González Rosas H, Castillo González AM, Gaytán Acuña EA (2018) In vitro cultivation of petals of four varieties of Begonia elatior. Rev Mex Cienc Agríc 9(6):1207–1216. https://doi.org/10.29312/remexca.v9i6.1585

    Google Scholar 

  • Viet PV, Nguyen HT, Cao TM, Hieu L (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 1957612:1–7. https://doi.org/10.1155/2016/1957612

    CAS  Google Scholar 

  • Wu G, Wei X, Wang X, Wei Y (2021) Changes in biochemistry and histochemical characteristics during somatic embryogenesis in Ormosia henryi Prain. Plant Cell Tiss Org Cult 144:505–517. https://doi.org/10.1007/s11240-020-01973-5

    Article  CAS  Google Scholar 

  • Ykbal K, Jozica MB, Umit AY, Katarina C, Trajce S, Gosel A (2004) Atomic absorption spectrometry determination of Cd, Cu, Fe, Ni, Pb, Zn and Tl traces in seawater following flotation separation. Sep Sci Technol 39(11):2751–2765. https://doi.org/10.1081/SS-200026751

    Article  CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Envir 373:572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007

    Article  CAS  Google Scholar 

  • Zafar H, Ali A, Zia M (2017) CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Appl Biochem Biotech 181:365–378. https://doi.org/10.1007/s12010-016-2217-2

    Article  CAS  Google Scholar 

  • Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Envir Sci Proc Impacts 17:1783–1793. https://doi.org/10.1039/C5EM00329F

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Vietnam Academy of Science and Technology under Grant Number NCXS01.03/22–24. The authors would like to thank Prof. Chendanda Chinnappa (Calgary University) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HGB and HTT acquired data wrote the manuscript. HTV, LTB, HDK, NTNM, VQL, DMC and NBN participated in performing the experiments, interpretation of data and revision for intellectual content. DTN, HTT and BVTV conceptualized and designed the study. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Hoang Thanh Tung, Bui Van The Vinh or Duong Tan Nhut.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Maurizio Lambardi.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, H.G., Tung, H.T., Van, H.T. et al. Copper nanoparticles enhanced surface disinfection, induction and maturation of somatic embryos in tuberous begonias (Begonia × tuberhybrida Voss) cultured in vitro. Plant Cell Tiss Organ Cult 151, 385–399 (2022). https://doi.org/10.1007/s11240-022-02360-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02360-y

Keywords

Navigation