Skip to main content
Log in

Impact of initial explants on in vitro propagation of native potato (Solanum tuberosum, Andigena group)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The high nutritional potential of native potatoes makes them an invaluable genetic resource for breeding. However, pathogens have caused both yield and industrial quality losses, and plant tissue culture is a promising alternative to obtain clean plant material. We compared distinct segments excised from apical and lateral sprouts taken from tubers as initial explants for in vitro culture of sixteen native potato genotypes. Thus, apical-distal (AD), mid-apical, lateral-distal, and mid-lateral segments were all grown on Murashige & Skoog medium. These explants were aseptic, reactive, and viable for all genotypes (with a probability greater than 30%), yielding cumulative proliferation rates of up to 1:10 individualizable segments, and about 86% of in vitro plants with 2 to 11 roots of up to 117 mm long. Responses were genotype-dependent during all stages of cultivation, and the best responding genotypes were Maravillosa, Duraznillo and Pepina Rodeo. On the other hand, AD sprouts were the best sprout type and segment for in vitro establishment, regardless of genotype. This is the first study of its kind with such a large range of Andean potato genotypes and should contribute to their germplasm conservation and increased multiplication efficiency.

Key message

Distal segments of apical sprouts gave the best in vitro morphogenic responses for sixteen different Andean native potato genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

plant material (tuber and sprouting tuber), and in vitro plants established from AD explants, corresponding to sixteen native potato genotypes. Ag Aguacata, Al Alcarrosa, Am Amapola, Ba Balbanera, Cb Chaucha Botella, Du Duraznillo, Ma Macachona, Mnz Manzana, Mar Maravillosa, Maz Mortiña Azul, Pn Pacha Negra, Pr Pepina Rodeo, Ra Rastrera, Rm Ratona Morada, Tc Tornilla Crema and Yh Yema de Huevo

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agramonte D (1999) Métodos biotecnológicos para la producción de semilla original de papa (Solanum tuberosum L.). Instituto de Biotecnología de las Plantas, Cuba

    Google Scholar 

  • Aguilar ME, Villalobos VM, Vasquez N (1992) Production of cocoa plants (Theobroma cacao L.) via micrografting of somatic embryos. Vitr Cell Dev Biol Plant 28P:15–19

    Article  Google Scholar 

  • Araque Barrera EJ, Pacheco Díaz JE et al (2018) Propagación y tuberización in vitro de dos variedades de papa. Cienc en Desarro 9:21–31. https://doi.org/10.19053/01217488.v9.n1.2018.7132

    Article  Google Scholar 

  • Arellano M, García M, Villavicencio E, García S (2010) Producción de plántulas y semilla prebásica de variedades comerciales de papa libres de enfermedades, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro de Investigación Regional Noreste, 1st edn. Campo Experimental Saltillo, Saltillo

    Google Scholar 

  • Badoni A, Chauhan JS (2010) In vitro sterilization protocol for micropropagation of Solanum tuberosum cv. ‘Kufri Himalini.’ Acad Arena 2:24–27

    Google Scholar 

  • Berdugo-Cely J, Valbuena RI, Sánchez-Betancourt E et al (2017) Genetic diversity and association mapping in the colombian central collection of Solanum tuberosum L. Andigenum group using SNPs markers. PLoS ONE 12:e0173039. https://doi.org/10.1371/journal.pone.0173039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradeen J, Haynes K (2011) Introduction to potato. In: James M (ed) Genetics genomics and breeding potato. CRC Press, Boca Raton, pp 6–14

    Google Scholar 

  • Bradshaw J, Ramsay G (2009) Potato origin and production. Advances in potato chemistry and technology, 1st edn. Elsevier Ltd, Amsterdam, pp 1–26

    Google Scholar 

  • Calliope S, Oscar M, Sammán N (2018) Biodiversity of andean potatoes: morphological, nutritional and functional characterization. Food Chem 238:42–50. https://doi.org/10.1016/j.foodchem.2016.12.074

    Article  CAS  PubMed  Google Scholar 

  • Chanatásig C (2004) Inducción de la embriogénesis somática en clones superiores de cacao (Theobroma cacao L.), con resistencia a enfermedades fungosas. Centro Agronómico Tropical de Investigación y Enseñanza CATIE, Cartago

    Google Scholar 

  • Fawzia E, Marwa E, El-kazzaz AA (2015) Micropropagation of four potato cultivars in vitro. Acad J Agric Res 3:184–188. https://doi.org/10.15413/ajar.2015.0145

    Article  CAS  Google Scholar 

  • Fock I, Collonnier C, Purwito A et al (2000) Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Sci 160:165–176. https://doi.org/10.1016/S0168-9452(00)00375-7

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhang Y, He Z, Fu X (2017) Gibberellins. In: Li J, Li C, Smith SM (eds) Hormone metabolism and signaling in plants. Academic Press, London, pp 107–160

    Chapter  Google Scholar 

  • García-Águila L, Rodríguez M, La OM et al (2015) Propagación in vitro de variedades cubanas de Solanum tuberosum L. ‘yuya’, ‘marinca’, ‘grettel’ e ‘Ibis.’ Biotecnol Veg 15:75–83

    Google Scholar 

  • Ha CM, Jun JH, Fletcher JC (2010) Shoot apical meristem form and function. Curr Top Dev Biol 91:103–140

    Article  CAS  Google Scholar 

  • Hardigan MA, Laimbeer FPE, Newton L et al (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci USA 114:E9999–E10008. https://doi.org/10.1073/pnas.1714380114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández Y, González M (2010) Efectos de la contaminación y oxidación fenólica en el establecimiento in vitro de frutales perennes. Cultiv Trop 31(4):00–00

    Google Scholar 

  • Huamán X, Ruíz-Sanchéz ME, Guerrero-Abad JC et al (2012) Propagación in vitro de segmentos nodales de cedro (Cedrela odorata L.) obtenidos a partir de semillas botánicas. Folia Amaz 21:109. https://doi.org/10.24841/fa.v21i1-2.39

    Article  Google Scholar 

  • Igarza J, Agramonte D, Alvarado Y et al (2012) Empleo de métodos biotecnológicos en la producción de semilla de papa. Biotecnol Veg 21:3–24

    Google Scholar 

  • Lizana C, Sandaña P, Behn A et al (2021) Potato. In: Sadras VO, Calderini DF (eds) Crop physiology case histories for major crops. Academic Press, London, pp 550–587

    Chapter  Google Scholar 

  • Machida R (2015) Diversity of potato genetic resources. Breed Sci 65:26–40. https://doi.org/10.1270/jsbbs.65.26

    Article  Google Scholar 

  • Mohapatra PP, Batra VK (2017) Tissue culture of potato (Solanum tuberosum L.): a review. Int J Curr Microbiol Appl Sci 6:489–495

    Article  CAS  Google Scholar 

  • Moreno JD, Valbuena L (2006) Colección colombiana de papa: riqueza de variabilidad genética para el mejoramiento del cultivo. Corpoica Rev Innovación y Cambio Tecnológico 4:16–24

    Google Scholar 

  • Mroginski L, Sansberro P, Flaschland E (2010) Establecimiento de cultivos de tejidos vegetales. Biotecnología y Mejoramiento Vegetal II. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, pp 17–25

    Google Scholar 

  • Mukul J, Ginzberg I (2020) Adventitious root formation in crops-potato as an example. Physiol Plant 172:124–133. https://doi.org/10.1111/ppl.13305

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naik PS, Buckseth T (2018) Recent advances in virus elimination and tissue culture for quality potato seed production. In: Gosal S, Wani S (eds) Biotechnologies of crop improvement. Springer, Cham, pp 131–158

    Chapter  Google Scholar 

  • Núñez-Zarantes VM (2020) La tecnología doble haploide en el mejoramiento genético de frutas exóticas: uchuva, Physalis peruviana L., como estudio de caso. Rev Colomb Biotecnol 22:2–5. https://doi.org/10.15446/rev.colomb.biote.v22n1.88590

    Article  Google Scholar 

  • Rzepka-Plevnes D, Kulpa D, Wajda A (2009) Initiation of in vitro cultures of Lycopersicon peruvianum var. humifusum. J Food Agric Environ 7:576–580

    CAS  Google Scholar 

  • SAS Institute Inc (2019) SAS University edition virtual application. SAS Institute Inc, Cary

    Google Scholar 

  • Shahriyar S, Akram S, Khan K et al (2015) In vitro plant regeneration of potato (Solanum tuberosum L.) at the rate of different hormonal concentration. Asian J Med Biol Res 1:297–303. https://doi.org/10.3329/ajmbr.v1i2.25625

    Article  Google Scholar 

  • Singh CR (2018) Review on problems and its remedy in plant tissue culture. Asian J Biol Sci 11:165–172. https://doi.org/10.3923/ajbs.2018.165.172

    Article  CAS  Google Scholar 

  • Slavov S (2005) Phytotoxins and in vitro screening for improved disease resistant plants. Biotechnol Biotechnol Equip 19:48–55. https://doi.org/10.1080/13102818.2005.10817285

    Article  CAS  Google Scholar 

  • Tacoronte M, Vielma M, Olivo A, Chacín N (2017) Efectos de nitratos y sacarosa en la propagación in vitro de tres variedades de papa nativa. Rev Colomb Biotecnol. https://doi.org/10.15446/rev.colomb.biote.v19n2.70160

    Article  Google Scholar 

  • Tapia M, Fries A (2007) Origen de las plantas cultivadas en los Andes. Guía de campo de los cultivos andinos. Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO) y Asociación Nacional de Productores Ecológicos del Perú (ANPE), Lima, pp 1–7

    Google Scholar 

  • Tejeda L, Mollinedo P, Aliaga-Rossel E, Peñarrieta JM (2020) Antioxidants and nutritional composition of 52 cultivars of native Andean potatoes. Potato Res 63:579–588. https://doi.org/10.1007/s11540-020-09458-w

    Article  CAS  Google Scholar 

  • Tekielska D, Peňázová E, Kovács T et al (2019) Bacterial contamination of plant in vitro cultures in commercial production detected by high-throughput amplicon sequencing. Acta Univ Agric Silvic Mendelianae Brun 67:1005–1014. https://doi.org/10.11118/actaun201967041005

    Article  CAS  Google Scholar 

  • Tinjacá S, Rodríguez L (2015) Catálogo de papas nativas de Nariño. Universidad Nacional De Colombia, Bogota

    Google Scholar 

  • Valderrama A, Abril V, Reyes J et al (2018) Propagación clonal in vitro de especies y variedades de papa (Solanum spp.) en función del tiempo. Big Bang 7:4–8

    Google Scholar 

  • Xhulaj D, Gixhari B (2018) In vitro micropropagation of potato (Solanum tuberosum L). cultivars. Agric For 64:105–112. https://doi.org/10.17707/AgricultForest.64.4.12

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Science, Technology and Innovation of Colombia, the Government of Boyacá, Boyacá and Colombia Bio Program, the Universidad Pedagógica y Tecnológica de Colombia (UPTC), the Vice-rectory for Research and Extension of UPTC and the Young Researcher Program of the UPTC, the Mayor’s Office of the municipality of Chiscas, and the company Tesoros Nativos SAS, for financing and support during the development of the research. Additionally, the authors thank the BIOPLASMA-UPTC research group.

Funding

The research leading to these results received funding from the Boyacá and Colombia Bio Program, convocation 794 of 2017 I+D projects for the technological development of a biological origin that contribute to the challenges of the Department of Boyacá- 2017. Also, partial financial support was received from by Young Researcher Program 2020 of the UPTC, convocation VIE No. 18.

Author information

Authors and Affiliations

Authors

Contributions

LC, DG, MB EA, JU, DA and ZO contributed to the study conception and design; JU analyzed the data; LC, DG, MB, and EA interpreted the data and wrote the manuscript with contributions of all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Diana Marcela Arias Moreno.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Research involved in humans and animals

Not applicable.

Additional information

Communicated by Sergio J. Ochatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 kb)

Supplementary file2 (DOCX 948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, L.Y.C., Tarazona, D.Y.G., Bohórquez Quintero, M.d.A. et al. Impact of initial explants on in vitro propagation of native potato (Solanum tuberosum, Andigena group). Plant Cell Tiss Organ Cult 150, 627–636 (2022). https://doi.org/10.1007/s11240-022-02317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02317-1

Keywords

Navigation