Skip to main content
Log in

Micropropagation of ethnomedicinal plant Calotropis sp. and enhanced production of stigmasterol

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Calotropis procera (Ait.) R. Br. and Calotropis gigantea (L.) Ait. are two common species in the genus Calotropis, well known for their ethnomedicinal values. Micropropagation was initiated from cotyledonary node and cotyledonary leaf explants, cultured on agar base MS medium supplemented with different concentration and combination of plant growth regulators (PGRs). The highest shoot regenerative responses of nodal explants were observed on medium containing 2 mg L1of BAP in both C. procera and C. gigantea. Induction of greenish friable callus was achieved with 1 mg L−1 NAA + 1.5 mg L−1 KIN from cotyledonary leaf explants. In vitro regenerated shoots developed root when transferred to MS medium containing 1.0 mg L−1 IBA. The well rooted plantlets were acclimatized in vermiculite and soil mixture (1:1 v/v) with an average survival rate of 90–93%. Quantification of secondary metabolite stigmasterol through HPTLC revealed higher content of it in in vitro cultured and ex vitro raised shoot of C. procera and C. gigantea compared to that of in naturally grown mother plant shoots. Optimized micropropagation protocol of the present investigation can be efficiently used for rapid in vitro plantlet regeneration and large scale production of pharmaceutically significant secondary metabolite stigmasterol without depleting natural population of Calotropis sp.

Key message

Enhanced production of secondary metabolite stigmasterol can be achieved through micro propagation of ethnomedicinally significant plant Calotropis sp. to meet the pharmaceutical need of present and future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

MS:

Murashige and Skoog

BAP:

6-Benzylaminopurine

IAA:

Indole-3-acetic acid

GA3 :

Gibberellic acid

IBA:

Indole-3-butyric acid

NAA:

α-Naphthalene acetic acid

PGRs:

Plant growth regulators

HPTLC:

High-performance thin-layer chromatography

FW:

Fresh weight

DW:

Dry weight

LOD:

Limit of detection

LOQ:

Limit of quantification

References

  • Abbasi H (2017) Indirect organogenesis in milkweed (Calotropis procera) from mature zygotic embryo explants. J Biotechnol Comput Biol Bionanotechnol 98(3):189–194

    CAS  Google Scholar 

  • Ahmad N, Javed SB, Khan MI, Anis M (2013) Rapid plant regeneration and analysis of genetic fidelity in micropropagated plants of Vitex trifolia: an important plant. Acta Physiol Plant 35:2493–2500

    Article  CAS  Google Scholar 

  • Amoo SO, Staden JV (2012) Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micropropagated Huernia hystrix. Plant Cell Tissue Org Cult 112:249–256

    Article  Google Scholar 

  • Amuthapriya T, Ravichandran P (2014) Rapid in vitro shoot multiplication through hypocotyl segment culture in Calotropis gigantea R Br. Int J Bioassay 3(11):3523–3525

    Google Scholar 

  • Amuthapriya T, Manimekalai V, Ravichandran P (2019) Callus free in vitro clonal propagation of giant milk weed—Calotropis Gigantea (L.) R. Br. Think India J 22(14):12924–12930

    Google Scholar 

  • Bae H, Song G, Lim W (2020) Stigmasterol causes ovarian cancer cell apoptosis by inducing endoplasmic reticulum and mitochondrial dysfunction. Pharmaceutics 12(6):488

    Article  CAS  PubMed Central  Google Scholar 

  • Baskaran P, Singh S, Van Staden J (2013) In vitro propagation, proscillaridin A production and antibacterial activity in Drimia robusta. Plant Cell Tissue Org Cult 114:259–267

    Article  CAS  Google Scholar 

  • Basu A, Sen T, Ray RN, Nag AK (1992) Hepatoprotectant effects of Calotropis procera root extract on experimental liver damage in animals. Fitoterapia LXIII(6):507–514

    Google Scholar 

  • Chandran H, Mukesh Meena M, Barupal T, Sharma K (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep 26:e00450

    Article  Google Scholar 

  • Clapa D, Borsai O, Hârța M, Bonta V, Szabo K, Coman V, Bobiș O (2020) Micropropagation, genetic fidelity and phenolic compound production of Rheum rhabarbarum L. Plants 9(5):656

    Article  CAS  PubMed Central  Google Scholar 

  • Dar RA, Majeed R, Seikh AA, Rehman S, Hamid A, Hasan QP (2017) Emodin, isolated and characterized from an endophytic fungus Polyporales sp., induces apoptotic cell death in human lung cancer cells through the loss mithocondrial membrane potential. J Phytopharmacol 6(5):288–292

    Article  Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnanaraj WE, Antonisamy JM, Mohanamathi RB, Subramanian KM (2012) In vitro clonal propagation of Achyranthes aspera L. and Achyranthes bidentata Blume using nodal explants. Asian Pac J Trop Biomed 2(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-García J, Vilarrasa-Blasi M, Zhiponova F, Divol S, Mora García E, Russinova A, Caño-Delgad I (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138(5):849–859

    Article  PubMed  Google Scholar 

  • Goyal K, Pathak D, Agnihotri RK, Sharma R (2016) In-vitro shoot proliferation of Calotropis procera. Ind J Plant Sci 5(4):53–56

    Google Scholar 

  • Grzegorczyk-Karolak I, Rytczak P, Bielecki S, Wysokińska H (2017) The influence of liquid systems for shoot multiplication, secondary metabolite production and plant regeneration of Scutellariaalpina. Plant Cell Tissue Org Cult 128:479–486

    Article  CAS  Google Scholar 

  • Habib MR, Nikkon F, Rahman M, Haque ME, Karim MR (2007) Isolation of stigmasterol and beta-sitosterol from methanolic extract of root bark of Calotropis gigantea (Linn). Pak J Biol Sci 10(22):4174–4176

    Article  CAS  PubMed  Google Scholar 

  • Hakim UA, Hussain A, Shaban M, Khan AH, Alariqi M, Gul S, Jun Z, Sun L, JianYing Li, ShuangXia J, Munis MFH (2018) Osmotin A plant defense tool against biotic and abiotic stresses. Plant Physiol Biochem 123:149–159

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SRM, Mohamed GA, Shaala LA, Banuls LM, Van Goietsenoven G, Kiss R, Youssef DTA (2012) New ursane-type triterpenes from the root barks of Calotropis procera. Phytochem Lett 5:490–495

    Article  CAS  Google Scholar 

  • IFPMA (1996) Validation of analytical procedure, methodology Q2 (R1). International Conference on Harmonization (ICH), International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) Geneva

  • Kabar K (1990) Comparison of kinetin and gibberellic acid effects on seed germination under saline conditions. Phyton 30:291–298

  • Kamboj A, Saluja AK (2013) Development of validated HPTLC method for quantification of stigmasterol from leaf and stem of Bryophyllum pinnatum. Arab J Chem 10:S2644–S2650

    Article  Google Scholar 

  • Khan MA, Abu S, Hasnath Md GS, Rahat R, Ahmed RS, Umar S (2020) Stigmasterol protects rats from collagen induced arthritis by inhibiting proinflammatory cytokines. Int Immunopharmacol 85:106642

    Article  Google Scholar 

  • Kumar A, Sharma SK, Charulata C, Devi R, Kulshrestha N, Krishnamurthy SL, Singh K, Yadav RK (2018) Impact of water deficit (salt and drought) stress on physiological, biochemical and yield attributes on wheat (Triticum aestivum) varieties. Indian J Agric Sci 88(10):1624–1632

    CAS  Google Scholar 

  • Larhsini M, Oumoulid L, Lazrek HB, Wataleb S, Bousaid M, Bekkouche K, Markouk M, Jana M (1999) Screening of antibacterial and antiparasitic activities of six Moroccan medicinal plants. Therapie 54(6):763–765

    CAS  PubMed  Google Scholar 

  • Malgorzata K, Mariusz K, Anna SA, Barbare T (2019) Enhanced accumulation of triterpenoid saponins in in vitro plantlets and dedifferentiated cultures of Eryngium planum L.: a medicinal plant. Hortic Environ Biotechnol 60(1):147–154

    Article  Google Scholar 

  • Mathur R, Gupta SK, Mathur SR, Velpandian T (2009) Anti tumor studies with extracts of Calotropis procer (Ait.) R. Br. root employing Hep2 cells and their possible mechanism of action. Indian J Exp Bio 47:343–348

    CAS  Google Scholar 

  • Muraseva DS, Kostikova VA (2021) In vitro propagation of Spiraea betulifolia sub sp. aemiliana (Rosaceae) and comparative analysis of phenolic compounds of microclones and intact plants. Plant Cell Tissue Org Cult 144:493–504

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ochoa VM, Howat S, Hong SM, Jang MO, Jin YW, Lee EK, Gary JL (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49(3):149–158

    Article  Google Scholar 

  • Padhy BM, Srivastava A, Kumar VL (2007) Calotropis procera latex affords protection against carbon tetrachloride induced hepatotoxicity in rats. J Ethnopharma 113(3):498–502

    Article  CAS  Google Scholar 

  • Panda S, Jafri M, Kar A, Meheta B (2009) Thyroid inhibitory, anti peroxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia 80:123–126

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Swarnkar V, Pandey T, Srivastava P, Kanojiya S, Mishra DK, Tripathi V (2016) Transcriptome and metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera. Sci Rep 6:34464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raksha BR, Siva R, Vino S, Babu S (2016) Spatio-varietal differences in stigmasterol biosynthesis in tomato and over expression of a sterol desaturase gene for enhanced stigmasterol production. In Vitro Cell Dev Biol Plant 52:571–579

    Article  CAS  Google Scholar 

  • Ramos MV, Freitas CDT, Stanisçuaski F, Macedo LLP, Sales MP, Sousa DP, Carlini CR (2007) Performance of distinct crop pests reared on diets enriched with latex proteins from Calotropis procera. Role of laticifer proteins in plant defence. Plant Sci 173:349–357

    Article  CAS  Google Scholar 

  • Rawat JM, Rawat B, Chandra A, Nautiyal S (2013) Influence of plant growth regulators on indirect shoot organogenesis and secondary metabolite production in Aconitum violaceum Jacq. Afr J Biotechnol 12(44):6287–6293

    Article  Google Scholar 

  • Rogowska A, Szakiel A (2020) The role of sterols in plant response to abiotic stress. Phytochem Rev 19:1525–1538

    Article  CAS  Google Scholar 

  • Roy AT, De DN (1990) Tissue culture and plant regeneration from immature embryo explants of Calotropis gigantea (Linn.) R. Br. Plant Cell Tissue Org Cult 20:229–233

    Article  CAS  Google Scholar 

  • Roy AT, Koutoulis A, De DN (2000) Cell suspension culture and plant regeneration in the latex-producing plant, Calotropis gigantea (Linn.) R, Br. Plant Cell Tissue Org Cult 63:15–22

    Article  CAS  Google Scholar 

  • Roy S, Sehgal R, Padhy BM, Kumar VL (2005) Antioxidant and protective effect of latex of Calotropis procera against alloxan-induced diabetes in rats. J Ethnopharma 102:470–473

    Article  CAS  Google Scholar 

  • Shasmita, Rai M, Naik SK (2018) Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production. Crit Rev Biotechnol 38(6):836–850

    Article  CAS  PubMed  Google Scholar 

  • Silva LNS, Perea PCD, Senanayake SGJN, Dahanayake N (2017) Development of an appropriate protocol for micropropagation of Calotropis gigantean (L.) (Wara). Trop Agric Res Ext 20(3–4):124–132

    Article  Google Scholar 

  • Singh P, Singh Y, Jeet A, Nimoriya R, Kanojiya S, Tripathi V, Mishra DK (2019) Standardization of enrichment protocols for some medicinally important cardenolids within in vitro grown Calotropis Gigantea plantlets. Pharmacog Mag 15:264–269

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Teixeria FM, Ramos MV, Soares AA (2011) In vitro tissue culture of the medicinal shrub Calotropis procera to produce pharmacologically active proteins from plant latex. Process Biochem 46(5):1118–1124

    Article  Google Scholar 

  • Tideman J, Hawker JS (1982) In vitro propagation of latex producing plants. Ann Bot 49:273–279

    Article  Google Scholar 

  • Tripathi PK, Awasthi S, Kanojiya S, Tripathi V, Mishra DK (2012) Callus culture and in vitro biosynthesis of cardiac glycosides from Calotropis gigantea (L.) Ait. In Vitro Cell Dev Biol Plant 49:455–560

    Article  Google Scholar 

  • Upadhyay RK (2014) Ethnomedicinal, Pharmaceutical and pesticidal uses of Calotropis procera (Aiton) (Family: Asclepiadaceae). Int J Green Pharm 8:135–146

    Article  CAS  Google Scholar 

  • Wang F, Xin X, Wei H, Qiu X, Liu B (2020) In vitro regeneration ex vitro rooting and foliar stoma studies of Pseudostellaria heterophylla (Miq.). Agronomy 10(7):949

    Article  CAS  Google Scholar 

  • Wheeler GS, Massey LM, Southwell IA (2003) Dietary influences on terpenoids sequestered by the biological control agent Oxyopsvitiosa: effect of plant volatiles from different Melaleuca quinquenervia chemotypes and laboratory host species. J Chem Ecol 29:189–208

    Article  CAS  PubMed  Google Scholar 

  • Yasodha R, Kamala S, Kalaiarasi K (2010) Anatomical and biochemical changes associated with in vitro rhizogenesis in Dendrocalamus giganteus. J Plant Biochem Biotechnol 19:217–222

    Article  Google Scholar 

  • Yue XX, Wang H, Jin D, Li M, Jiang W (2016) Healthcare data gateways: found healthcare intelligence on block chain with novel privacy risk control. J Med Syst 40(10):218

    Article  PubMed  Google Scholar 

  • Yusuf AJ, Abdullahi MI, Aleku GA, Ibrahim IA, Alebiosu CO, Yahaya M, Abubakar H (2018) Antimicrobial activity of stigmasterol from the stem bark of Neocarya macrophylla. J Med Plant Econ Dev 2(1):1–5

    Google Scholar 

Download references

Acknowledgements

One of the authors (RS) acknowledges University Grants Commission (UGC), Govt. of India for financial support in form of fellowship. Authors are grateful to DR. T. Ravikumar, Dept of Botany, R. K. University, Anantapuram, Andhra Pradesh (India) for providing plant C. procera plant material.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis and investigation, original draft preparation: RS. Conceptualization, supervision, review and editing of manuscript: BK.

Corresponding author

Correspondence to Bandana Kullu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ali R. Alan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethy, R., Kullu, B. Micropropagation of ethnomedicinal plant Calotropis sp. and enhanced production of stigmasterol. Plant Cell Tiss Organ Cult 149, 147–158 (2022). https://doi.org/10.1007/s11240-022-02231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02231-6

Keywords

Navigation