Skip to main content
Log in

Dynamic landscape of mitochondrial Cytidine-to-Uridine RNA editing in tobacco (Nicotiana tabacum) shows its tissue specificity

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

RNA editing is a prevalent nucleotide modification at the RNA level in higher plants. However, little is known about the dynamic distribution of RNA editing among tissues. In this study, we explored the tissue specificity of mitochondrial RNA editing in tobacco (Nicotiana tabacum) based on publicly available RNA-seq data from four tobacco tissues: root, stem, leaf, and flower. As a result, 473 RNA editing sites involved in 60 mitochondrial genes were identified. The results showed an uneven distribution of editing sites among tobacco tissues, a total of 106 sites and 11 genes were identified as tissue-specific editing in the four tissues, and a total of 11 sites located in six genes were detected differentially edited statistically (p-value < 0.01). The expression of RNA edited genes and RNA editing factors was analyzed, and we observed that most tissue-specific edited genes were expressed at a low level. There were about ~  20 RNA editing factors that were differentially expressed between different tissues, indicating that the heterogeneity of RNA editing in different tissues might result from the expression regulation of RNA editing factors. Our analyses provide insights into the understanding of landscape, regulation, and function of RNA editing events in higher plants.

Key message

Dynamic landscape of conserved editing sites revealed the tissue specificity of mitochondrial RNA editing in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C-to-U:

Cytidines substituting uridines

PPR:

Pentatricopeptide repeat

RNA-seq:

RNA sequencing

SNPs:

Single nucleotide polymorphisms

WGS:

Whole genome re-sequencing

cox1 :

Cytochrome coxidase subunit 1

ORFs:

Open reading frames

nad :

NADH dehydrogenase

MORF:

Multiple organelle RNA editing factors

rps :

Ribosomal protein gene

rps14 :

Ribosomal protein S14

ccmB :

Cytochrome c maturation gene

References

  • Alon S, Garrett SC, Levanon EY, Olson S, Graveley BR, Rosenthal JJ, Eisenberg E (2015) The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing. Elife. https://doi.org/10.7554/eLife.05198

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X (2012) Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 22(1):142–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46(6):819–826

    CAS  PubMed  Google Scholar 

  • Blanc V, Xie Y, Kennedy S, Riordan JD, Rubin DC, Madison BB, Mills JC, Nadeau JH, Davidson NO (2019) Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. RNA 25(1):70–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bock R, Hagemann R, Kossel H, Kudla J (1993) Tissue-and stage-specific modulation of RNA editing of the psbF and psbL transcript from spinach plastids–a new regulatory mechanism? Mol Gen Genet 240(2):238–244

    CAS  PubMed  Google Scholar 

  • Brenner WG, Mader M, Müller NA, Hoenicka H, Schroeder H, Zorn I, Fladung M, Kersten B (2019) High level of conservation of mitochondrial RNA editing sites among four populus species. G3 Genes Genomes Genetics 9(3):709–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown J, Pirrung M, McCue LA (2017) FQC dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33(19):3137–3139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TC, Liu YC, Wang XW, Wu CH, Huang CH, Chang CC (2017) Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp formosana. Bot Stud 58:14

    Google Scholar 

  • Chepelev I (2012) Detection of RNA editing events in human cells using high-throughput sequencing. Methods Mol Biol 815:91–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Covello PS, Gray MW (1989) RNA editing in plant-mitochondria. Nature 341(6243):662–666

    CAS  PubMed  Google Scholar 

  • Danecek P, McCarthy SA (2017) BCFtools/csq: haplotype-aware variant consequences. Bioinformatics 33(13):2037–2039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H (2021) Twelve years of SAMtools and BCFtools. GigaScience. https://doi.org/10.1093/gigascience/giab008

    Article  PubMed  PubMed Central  Google Scholar 

  • Edera AA, Gandini CL, Sanchez-Puerta MV (2018a) Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. Plant Mol Biol 97(3):215–231

    CAS  PubMed  Google Scholar 

  • Grimes BT, Sisay AK, Carroll HD, Cahoon AB (2014) Deep sequencing of the tobacco mitochondrial transcriptome reveals expressed ORFs and numerous editing sites outside coding regions. BMC Genomics 15:31

    PubMed  PubMed Central  Google Scholar 

  • Guo WH, Grewe F, Mower JP (2015) Variable frequency of plastid RNA editing among ferns and repeated loss of uridine-to-cytidine editing from vascular plants. PLoS ONE 10(1):e0117075

    PubMed  PubMed Central  Google Scholar 

  • Haag S, Schindler M, Berndt L, Brennicke A, Takenaka M, Weber G (2017) Crystal structures of the Arabidopsis thaliana organellar RNA editing factors MORF1 and MORF9. Nucleic Acids Res 45(8):4915–4928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246(4937):1632–1634

    CAS  PubMed  Google Scholar 

  • Hoch B, Maier RM, Appel K, Igloi GL, Kossel H (1991) Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353(6340):178–180

    CAS  PubMed  Google Scholar 

  • Ichinose M, Sugita M (2017) RNA editing and its molecular mechanism in plant organelles. Genes 8(1):5

    Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz H, Knoop V (2013) PREPACT 2.0: predicting C-to-U and U-to-C RNA editing in organelle genome sequences with multiple references and curated RNA editing annotation. Bioinform Biol Insights 7:1–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz H, Hein A, Knoop V (2018) Plant organelle RNA editing and its specificity factors: enhancements of analyses and new database features in PREPACT 3.0. BMC Bioinformatics 19(1):255

    PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, S. Genome Project Data Processing (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T, Admon A, Levanon EY, Rosenthal JJC, Eisenberg E (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 169(2):191–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Cao SK, Sayyed A, Yang HH, Zhao J, Wang XM, Jia RX, Sun F, Tan BC (2020) The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. J Exp Bot 71(18):5495–5505

    CAS  PubMed  Google Scholar 

  • Lukes J, Kaur B, Speijer D (2021) RNA editing in mitochondria and plastids: weird and widespread. Trends Genet 37(2):99–102

    CAS  PubMed  Google Scholar 

  • Manna S (2015) An overview of pentatricopeptide repeat proteins and their applications. Biochimie 113:93–99

    CAS  PubMed  Google Scholar 

  • Miyata Y, Sugita M (2004) Tissue- and stage-specific RNA editing of rps 14 transcripts in moss (Physcomitrella patens) chloroplasts. J Plant Physiol 161(1):113–115

    CAS  PubMed  Google Scholar 

  • Nawae W, Yundaeng C, Naktang C, Kongkachana W, Yoocha T, Sonthirod C, Narong N, Somta P, Laosatit K, Tangphatsornruang S, Pootakham W (2020) The genome and transcriptome analysis of the vigna mungo chloroplast. Plants (basel) 9(9):1247

    CAS  Google Scholar 

  • Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102(4):437–449

    CAS  PubMed  Google Scholar 

  • Peng X, Xu X, Wang Y, Hawke DH, Yu S, Han L, Zhou Z, Mojumdar K, Jeong KJ, Labrie M, Tsang YH, Zhang M, Lu Y, Hwu P, Scott KL, Liang H, Mills GB (2018) A-to-I RNA editing contributes to proteomic diversity in cancer. Cancer Cell 33(5):817–828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11(9):1650–1667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riemondy KA, Gillen AE, White EA, Bogren LK, Hesselberth JR, Martin SL (2018) Dynamic temperature-sensitive A-to-I RNA editing in the brain of a heterothermic mammal during hibernation. RNA 24(11):1481–1495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    CAS  PubMed  Google Scholar 

  • Ruchika C, Okudaira MS, Tsukahara T (2021) Genome-wide identification of U-To-C RNA editing events for nuclear genes in Arabidopsis thaliana. Cells. https://doi.org/10.3390/cells10030635

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13(12):663–670

    CAS  PubMed  Google Scholar 

  • Shikanai T (2015) RNA editing in plants: machinery and flexibility of site recognition. BBA-Bioenergetics 1847(9):779–785

    CAS  PubMed  Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    CAS  PubMed  Google Scholar 

  • Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O (2020) Plant organellar RNA editing: what 30 years of research has revealed. Plant J 101(5):1040–1056

    CAS  PubMed  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272(6):603–615

    CAS  PubMed  Google Scholar 

  • Sun Y, Li X, Wu D, Pan Q, Ji Y, Ren H, Ding K (2016) RED: a Java-MySQL software for identifying and visualizing RNA editing sites using rule-based and statistical filters. PLoS ONE 11(3):e0150465

    PubMed  PubMed Central  Google Scholar 

  • Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Hartel B, Brennicke A (2012) Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc Natl Acad Sci U S A 109(13):5104–5109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takenaka M, Zehrmann A, Verbitskiy D, Hartel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47(47):335–352

    CAS  PubMed  Google Scholar 

  • Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, Liu KI, Zhang R, Ramaswami G, Ariyoshi K, Gupte A, Keegan LP, George CX, Ramu A, Huang N, Pollina EA, Leeman DS, Rustighi A, Goh YPS, Chawla A, Del Sal G, Peltz G, Brunet A, Conrad DF, Samuel CE, O’Connell MA, Walkley CR, Nishikura K, Li JB (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550(7675):249–254

    PubMed  PubMed Central  Google Scholar 

  • Tang W, Luo C (2018) Molecular and functional diversity of RNA editing in plant mitochondria. Mol Biotechnol 60(12):935–945

    CAS  PubMed  Google Scholar 

  • Tian F, Yu J, Zhang Y, Xie Y, Wu B, Miao Y (2019) MORF9 functions in plastid RNA editing with tissue specificity. Int J Mol Sci. https://doi.org/10.3390/ijms20184635

    Article  PubMed  PubMed Central  Google Scholar 

  • Tillich M, Lehwark P, Morton BR, Maier UG (2006) The evolution of chloroplast RNA editing. Mol Biol Evol 23(10):1912–1921

    CAS  PubMed  Google Scholar 

  • Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH (2013) Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. Plant Mol Biol 82(4–5):375–392

    CAS  PubMed  Google Scholar 

  • Walkley CR, Li JB (2017) Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol 18(1):205

    PubMed  PubMed Central  Google Scholar 

  • Wu S, Liu W, Aljohi HA, Alromaih SA, Alanazi IO, Lin Q, Yu J, Hu S (2018) REDO: RNA editing detection in plant organelles based on variant calling results. J Comput Biol 25(5):509–516

    CAS  PubMed  Google Scholar 

  • Yagi Y, Tachikawa M, Noguchi H, Satoh S, Obokata J, Nakamura T (2013) Pentatricopeptide repeat proteins involved in plant organellar RNA editing. RNA Biol 10(9):1419–1425

    PubMed  PubMed Central  Google Scholar 

  • Yagi Y, Nakamura T, Small I (2014) The potential for manipulating RNA with pentatricopeptide repeat proteins. Plant J 78(5):772–782

    CAS  PubMed  Google Scholar 

  • Yan J, Zhang Q, Yin P (2018) RNA editing machinery in plant organelles. Sci China Life Sci 61(2):162–169

    CAS  PubMed  Google Scholar 

  • Zahn LM (2017) The evolution of edited RNA transcripts. Science 355(6331):1278–1279

    PubMed  Google Scholar 

  • Zaidan H, Ramaswami G, Golumbic YN, Sher N, Malik A, Barak M, Galiani D, Dekel N, Li JB, Gaisler-Salomon I (2018) A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations. BMC Genomics 19(1):28

    PubMed  PubMed Central  Google Scholar 

  • Zeltz P, Hess WR, Neckermann K, Borner T, Kossel H (1993) Editing of the chloroplast rpoB transcript is independent of chloroplast translation and shows different patterns in barley and maize. EMBO J 12(11):4291–4296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Jiang X, Zhang F, Wang T, Zhang X (2020) Dynamic response of RNA editing to temperature in grape by RNA deep sequencing. Funct Integr Genomics 20(3):421–432

    CAS  PubMed  Google Scholar 

  • Zhang Q, Wang YL, Xie W, Chen CZ, Ren DY, Hu J, Zhu L, Zhang GH, Gao ZY, Guo LB, Zeng DL, Shen L, Qian Q (2021) OsMORF9 is necessary for chloroplast development and seedling survival in rice. Plant Sci 307:110907

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of Bioinformatics Group of Wuhan Botanical Garden, Chinese Academy of Sciences, China for the discussion and suggestion to improve the manuscript.

Funding

This research was funded by the National Natural Science Foundation of China, Grant numbers 32070682 and 31702322, the National Science and Technology Innovation Zone Project, Grant numbers 1716315XJ00200303 and 1816315XJ00100216, and CAS Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.F., A.Z. and X.Z.; methodology, A.Z. and J.F.; software, A.Z and J.F.; validation, J.F. and A.Z.; formal analysis, J.F. and A.Z.; investigation, J.F. and A.Z.; resources, J.F. and A.Z.; data curation, J.F., T.W., Z.D. and A.Z.; writing original draft preparation, J.F. and A.Z.; writing, review and editing, A.Z. and X.Z.; visualization, J.F., X.J, and T.W.; supervision, X.Z.; project administration, X.Z.; funding acquisition, X.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Aidi Zhang or Xiujun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Joyce Van Eck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Jiang, X., Wang, T. et al. Dynamic landscape of mitochondrial Cytidine-to-Uridine RNA editing in tobacco (Nicotiana tabacum) shows its tissue specificity. Plant Cell Tiss Organ Cult 148, 363–376 (2022). https://doi.org/10.1007/s11240-021-02194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02194-0

Keywords

Navigation