Skip to main content
Log in

Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Our understanding of the dynamic and evolution of RNA editing in angiosperms is in part limited by the few editing sites identified to date. This study identified 10,217 editing sites from 17 diverse angiosperms. Our analyses confirmed the universality of certain features of RNA editing, and offer new evidence behind the loss of editing sites in angiosperms.

Abstract

RNA editing is a post-transcriptional process that substitutes cytidines (C) for uridines (U) in organellar transcripts of angiosperms. These substitutions mostly take place in mitochondrial messenger RNAs at specific positions called editing sites. By means of publicly available RNA-seq data, this study identified 10,217 editing sites in mitochondrial protein-coding genes of 17 diverse angiosperms. Even though other types of mismatches were also identified, we did not find evidence of non-canonical editing processes. The results showed an uneven distribution of editing sites among species, genes, and codon positions. The analyses revealed that editing sites were conserved across angiosperms but there were some species-specific sites. Non-synonymous editing sites were particularly highly conserved (~ 80%) across the plant species and were efficiently edited (80% editing extent). In contrast, editing sites at third codon positions were poorly conserved (~ 30%) and only partially edited (~ 40% editing extent). We found that the loss of editing sites along angiosperm evolution is mainly occurring by replacing editing sites with thymidines, instead of a degradation of the editing recognition motif around editing sites. Consecutive and highly conserved editing sites had been replaced by thymidines as result of retroprocessing, by which edited transcripts are reverse transcribed to cDNA and then integrated into the genome by homologous recombination. This phenomenon was more pronounced in eudicots, and in the gene cox1. These results suggest that retroprocessing is a widespread driving force underlying the loss of editing sites in angiosperm mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.ncbi.nlm.nih.gov/genome/organelle.

  2. https://www.ncbi.nlm.nih.gov/sra.

  3. Data harvested January 2018.

  4. https://github.com/genome/bam-readcount.

  5. http://broadinstitute.github.io/picard.

  6. http://www.evolution.rdg.ac.uk/BayesTraitsV3.0.1/BayesTraitsV3.0.1.html.

References

  • Adams KL, Song K, Roessler PG, Nugent JM, Doyle JL, Doyle JJ, Palmer JD (1999). Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc Natl Acad Sci USA 96(24):13863–13868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 27(6):1436–1448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atluri S, Rampersad SN, Bonen L (2015) Retention of functional genes for S19 ribosomal protein in both the mitochondrion and nucleus for over 60 million years. Mol Genet Genomics 290(6):2325–2333

    Article  PubMed  CAS  Google Scholar 

  • Aubourg S, Boudet N, Kreis M, Lecharny A (2000) In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol Biol 42(4):603–613

    Article  PubMed  CAS  Google Scholar 

  • Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X (2012) Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 22(1):142–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    Article  PubMed  CAS  Google Scholar 

  • Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I (2012). A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8(8):e1002910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bégu D, Mercado A, Farré J-C, Moenne A, Holuigue L, Araya A, Jordana X (1998) Editing status of mat-r transcripts in mitochondria from two plant species: C-to-U changes occur in putative functional RT and maturase domains. Curr Genet 33(6):420–428

    Article  PubMed  Google Scholar 

  • Bentolila S, Elliott LE, Hanson MR (2008) Genetic architecture of mitochondrial editing in Arabidopsis thaliana. Genetics 178(3):1693–1708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bentolila S, Oh J, Hanson MR, Bukowski R (2013). Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet, 9(6):e1003584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowe LM, dePamphilis CW (1996) Effects of RNA editing and gene processing on phylogenetic reconstruction. Mol Biol Evol 13(9):1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Castandet B, Araya A (2012) The nucleocytoplasmic conflict, a driving force for the emergence of plant organellar RNA editing. IUBMB Life 64(2):120–125

    Article  PubMed  CAS  Google Scholar 

  • Castandet B, Choury D, Bégu D, Jordana X, Araya A (2010) Intron RNA editing is essential for splicing in plant mitochondria. Nucleic Acids Res 38(20):7112–7121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chateigner-Boutin AL, Small I (2007). A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res 35(17):e114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi C, Liu Z, Adams KL (2006) Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes. New Phytol 172(3):429–439

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341(6243):662

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1993) On the evolution of RNA editing. Trends Genet 9(8):265–268

    Article  PubMed  CAS  Google Scholar 

  • Cuenca A, Petersen G, Seberg O, Davis JI, Stevenson DW (2010) Are substitution rates and RNA editing correlated? BMC Evol Biol 10(1):1

    Article  CAS  Google Scholar 

  • Cuenca A, Ross TG, Graham SW, Barrett CF, Davis JI, Seberg O, Petersen G (2016) Localized retroprocessing as a model of intron loss in the plant mitochondrial genome. Genome Biol Evol 8(7):2176–2189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cummings MP, Myers DS (2004) Simple statistical models predict C-to-U edited sites in plant mitochondrial RNA. BMC Bioinform 5(1):1

    Article  Google Scholar 

  • Daley DO, Adams KL, Clifton R, Qualmann S, Millar AH, Palmer JD, Elke P, Whelan J (2002) Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant J 30(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Diroma MA, Ciaccia L, Pesole G, Picardi E (2017). Elucidating the editome: bioinformatics approaches for RNA editing detection. Brief Bioinform. https://doi.org/10.1093/bib/bbx129.

    Article  PubMed  Google Scholar 

  • Fang Y, Wu H, Zhang T, Yang M, Yin Y, Pan L, Yu X, Zhang X, Hu S, Al-Mssallem IS et al. (2012). A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS ONE, 7(5):e37164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farré J-C, Araya A (1999) The mat-r open reading frame is transcribed from a non-canonical promoter and contains an internal promoter to co-transcribe exons nad1e and nad5III in wheat mitochondria. Plant Mol Biol 40(6):959–967

    Article  PubMed  Google Scholar 

  • Farré J-C, Leon G, Jordana X, Araya A (2001) Cis recognition elements in plant mitochondrion RNA editing. Mol Cell Biol 21(20):6731–6737

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol 191(1):37–47

    Article  PubMed  CAS  Google Scholar 

  • Geiss KT, Abbas GM, Makaroff CA (1994) Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate. Mol Gen Genet MGG 243(1):97–105

    Article  PubMed  CAS  Google Scholar 

  • Giegé P, Brennicke A (1999). RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96(26):15324–15329

    Article  PubMed  PubMed Central  Google Scholar 

  • Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37(15):5093–5104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grewe F, Herres S, Viehöver P, Polsakiewicz M, Weisshaar B, Knoop V (2010) A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii. Nucleic Acids Res 39(7):2890–2902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grewe F, Edger PP, Keren I, Sultan L, Pires JC, Ostersetzer-Biran O, Mower JP (2014) Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea. Mitochondrion 19:135–143

    Article  PubMed  CAS  Google Scholar 

  • Grimes BT, Sisay AK, Carroll HD, Cahoon AB (2014) Deep sequencing of the tobacco mitochondrial transcriptome reveals expressed ORFs and numerous editing sites outside coding regions. BMC Genomics 15(1):1

    Article  Google Scholar 

  • Gualberto JM, Lamattina L, Bonnard G, Weil JH, Grienenberger JM (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341(6243):660–662

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Grewe F, Mower JP (2015). Variable frequency of plastid RNA editing among ferns and repeated loss of uridine-to-cytidine editing from vascular plants. PLoS ONE, 10(1):e0117075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo W, Zhu A, Fan W, Mower JP (2017) Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns. New Phytol 213(1):391–403

    Article  PubMed  CAS  Google Scholar 

  • Hammani K, Giegé P (2014) RNA metabolism in plant mitochondria. Trends Plant Sci 19(6):380–389

    Article  PubMed  CAS  Google Scholar 

  • Hao W, Palmer JD (2009). Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes. Proc Natl Acad Sci USA 106(39):16728–16733

    Article  PubMed  PubMed Central  Google Scholar 

  • Havird JC, Sloan DB (2016) The roles of mutation, selection, and expression in determining relative rates of evolution in mitochondrial versus nuclear genomes. Mol Biol Evol 33(12):3042–3053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hecht J, Grewe F, Knoop V (2011) Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genom Biol Evol 3:344–358

    Article  CAS  Google Scholar 

  • Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246(4937):1632–1634

    Article  PubMed  CAS  Google Scholar 

  • Islam MS, Studer B, Byrne SL, Farrell JD, Panitz F, Bendixen C, Bendixen C, Møller IM, Asp T (2013) The genome and transcriptome of perennial ryegrass mitochondria. BMC Genomics 14(1):202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itchoda N, Nishizawa S, Nagano H, Kubo T, Mikami T (2002) The sugar beet mitochondrial nad4 gene: an intron loss and its phylogenetic implication in the Caryophyllales. Theor Appl Genet 104(2–3):209–213

    Article  PubMed  CAS  Google Scholar 

  • Jobson RW, Qiu Y-L (2008) Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift? Biol Direct 3(1):1

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazakoff SH, Imelfort M, Edwards D, Koehorst J, Biswas B, Batley J, Scott PT, andGresshoff PM (2012). Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata. PLoS ONE, 7(12):e51687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim B, Kim K, Yang TJ, Kim S (2016) Completion of the mitochondrial genome sequence of onion (Allium cepa L.) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmFN gene split. Curr Genet 62(4):873–885

    Article  PubMed  CAS  Google Scholar 

  • Kindgren P, Yap A, Bond CS, Small I (2015) Predictable alteration of sequence recognition by RNA editing factors from Arabidopsis. Plant Cell 27(2):403–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knie N, Grewe F, Fischer S, Knoop V (2016) Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns–a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles. BMC Evol Biol 16(1):134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoop V (2011) When you can’t trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 68(4):567–586

    Article  PubMed  CAS  Google Scholar 

  • Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31(9):2417–2423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  PubMed  CAS  Google Scholar 

  • Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22):3276–3278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawson MJ, Jiao J, Fan W, Zhang L (2010). A pattern analysis of gene conversion literature. Comp Funct Genomics 2009:761512

    PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez L, Picardi E, Quagliariello C (2007) RNA editing has been lost in the mitochondrial cox3 and rps13 mRNAs in Asparagales. Biochimie 89(1):159–167

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Lecharny A (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16(8):2089–2103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lutz KA, Maliga P (2001) Lack of conservation of editing sites in mRNAs that encode subunits of the NAD (P) H dehydrogenase complex in plastids and mitochondria of Arabidopsis thaliana. Curr Genet 40(3):214–219

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311(5768):1727–1730

    Article  PubMed  CAS  Google Scholar 

  • Mower JP (2008) Modeling sites of RNA editing as a fifth nucleotide state reveals progressive loss of edited sites from angiosperm mitochondria. Mol Biol Evol 25(1):52–61

    Article  PubMed  CAS  Google Scholar 

  • Mower JP (2009) The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res 37(suppl 2):W253–W259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mower JP, Palmer JD (2006) Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris. Mol Genet Genomics 276(3):285–293

    Article  PubMed  CAS  Google Scholar 

  • Mulligan RM, Chang KLC, Chou CC (2007) Computational analysis of RNA editing sites in plant mitochondrial genomes reveals similar information content and a sporadic distribution of editing sites. Mol Biol Evol 24(9):1971–1981

    Article  PubMed  CAS  Google Scholar 

  • Neuwirt J, Takenaka M, der Merwe JA, Brennicke A (2005) An in vitro RNA editing system from cauliflower mitochondria: editing site recognition parameters can vary in different plant species. RNA 11(10):1563–1570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268(4):434–445

    Article  PubMed  CAS  Google Scholar 

  • Odom OW, Herrin DL (2013) Reverse transcription of spliced psbA mRNA in Chlamydomonas spp. and its possible role in evolutionary intron loss. Mol Biol Evol 30(12):2666–2675

    Article  PubMed  CAS  Google Scholar 

  • Paigen K, Petkov P (2010) Mammalian recombination hot spots: properties, control and evolution. Nat Rev Genet 11(3):221–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. J Mol Evol 28(1):87–97

    Article  PubMed  CAS  Google Scholar 

  • Park S, Ruhlman TA, Sabir JSM, Mutwakil MHZ, Baeshen MN, Sabir MJ, Jansen RK (2014) Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids. BMC Genomics 15(1):1

    Article  CAS  Google Scholar 

  • Parkinson CL, Mower JP, Qiu Y-L, Shirk AJ, Song K, Young ND, Palmer JD et al (2005) Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol Biol 5(1):73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perrotta G, Regina TM, Quagliariello C, Ceci LR (1996) Conservation of the organization of the mitochondrialnad3 andrps12 genes in evolutionarily distant angiosperms. Mol Gen Genet MGG 251(3):326–337

    PubMed  CAS  Google Scholar 

  • Petersen G, Seberg O, Davis JI, Stevenson DW (2006) RNA editing and phylogenetic reconstruction in two monocot mitochondrial genes. Taxon 55(4):871–886

    Article  Google Scholar 

  • Picardi E, Horner DS, Chiara M, Schiavon R, Valle G, Pesole G (2010) Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing. Nucleic Acids Res 38(14):4755–4767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ran J-H, Gao H, Wang X-Q (2010) Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms. Mol Phylogenet Evol 54(1):136–149

    Article  PubMed  CAS  Google Scholar 

  • Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Palmer JD (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342(6165):1468–1473

    Article  PubMed  CAS  Google Scholar 

  • Richardson AO, Rice DW, Young GJ, Alverson AJ, Palmer JD (2013) The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biol 11(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahraeian SME, Mohiyuddin M, Sebra R, Tilgner H, Afshar PT, Au KF, et al. (2017). Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat Commun 8:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salmans ML, Chaw SM, Lin CP, Shih ACC, Wu YW, Mulligan RM (2010) Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes. Curr Genet 56(5):439–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuster W, Brennicke A (1991) RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in coxl and rps3 mRNAs of Oenothera. Nucleic Acids Res 19(24):6923–6928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shearman JR, Sangsrakru D, Ruang-Areerate P, Sonthirod C, Uthaipaisanwong P, Yoocha T, Poopear S, Theerawattanasuk K, Tragoonrung S, Tangphatsornruang S (2014) Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript. BMC Plant Biol 14(1):1

    Article  Google Scholar 

  • Shields DC, Wolfe KH (1997) Accelerated evolution of sites undergoing mRNA editing in plant mitochondria and chloroplasts. Mol Biol Evol 14(3):344–349

    Article  PubMed  CAS  Google Scholar 

  • Shukla P, Singh NK, Gautam R, Ahmed I, Yadav D, Sharma A, Kirti PB (2017). Molecular approaches for manipulating male sterility and strategies for fertility restoration in plants. Mol Biotechnol 59:445

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB (2017). Nuclear and mitochondrial RNA editing systems have opposite effects on protein diversity. Biol Lett 13:20170314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sloan DB, Taylor DR (2010) Testing for selection on synonymous sites in plant mitochondrial DNA: the role of codon bias and RNA editing. J Mol Evol 70(5):479–491

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB, MacQueen AH, Alverson AJ, Palmer JD, Taylor DR (2010) Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force. Genetics 185(4):1369–1380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR (2012) De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol Ecol Resour 12(2):333–343

    Article  PubMed  CAS  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif–a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25(2):45–47

    Article  Google Scholar 

  • Stone JD, Storchova H (2015) The application of RNA-seq to the comprehensive analysis of plant mitochondrial transcriptomes. Mol Genet Genomics 290(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Stone JD, Koloušková P, Sloan DB, Štorchová H (2017). Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J Exp Bot 68(7):1599–1612

    Article  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272(6):603–615

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Wang X, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan B-C (2015) Empty pericarp7 encodes a mitochondrial E–subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. Plant J 84(2):283–295

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Bentolila S, Hanson MR (2016) The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci 21(11):962–973

    Article  PubMed  CAS  Google Scholar 

  • Takenaka M, Brennicke A (2003) In vitro RNA editing in pea mitochondria requires NTP or dNTP, suggesting involvement of an RNA helicase. J Biol Chem 278(48):47526–47533

    Article  PubMed  CAS  Google Scholar 

  • Takenaka M, Brennicke A (2007) RNA editing in plant mitochondria: assays and biochemical approaches. In: Methods in enzymology, vol 424. Elsevier, pp 439–458

  • Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Härtel B, Brennicke A (2012). Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc Natl Acad Sci USA 109(13):5104–5109

    Article  PubMed  PubMed Central  Google Scholar 

  • Takenaka M, Zehrmann A, Brennicke A, Graichen K (2013a). Improved computational target site prediction for pentatricopeptide repeat RNA editing factors. PLoS ONE, 8(6):e65343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013b) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352

    Article  PubMed  CAS  Google Scholar 

  • Tillich M, Lehwark P, Morton BR, Maier UG (2006) The evolution of chloroplast RNA editing. Mol Biol Evol 23(10):1912–1921

    Article  PubMed  CAS  Google Scholar 

  • Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH (2013) Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. Plant Mol Biol 82(4–5):375–392

    Article  PubMed  CAS  Google Scholar 

  • Wahleithner JA, MacFarlane JL, Wolstenholme DR (1990). A sequence encoding a maturase-related protein in a group II intron of a plant mitochondrial nad1 gene. Proc Natl Acad Sci USA 87(2):548–552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Z, Stone JD, Štorchová H, Sloan DB (2015) High transcript abundance, RNA editing, and small RNAs in intergenic regions within the massive mitochondrial genome of the angiosperm Silene noctiflora. BMC Genomics 16(1):1

    Article  CAS  Google Scholar 

  • Wu Z, Sloan DB, Brown CW, Rosenblueth M, Palmer JD, Ong HC (2017) Mitochondrial retroprocessing promoted functional transfers of rpl5 to the nucleus in grasses. Mol Biol Evol 34:2340

    Article  PubMed  PubMed Central  Google Scholar 

  • Yagi Y, Tachikawa M, Noguchi H, Satoh S, Obokata J, Nakamura T (2013a) Pentatricopeptide repeat proteins involved in plant organellar RNA editing. RNA Biol 10(9):1419–1425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yagi Y, Hayashi S, Kobayashi K, Hirayama T, Nakamura T (2013b). Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. PLoS ONE, 8(3):e57286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye N, Wang X, Li J, Bi C, Xu Y, Wu D, Ye Q (2017) Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis. PeerJ 5:e3148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yura K, Go M (2008) Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles. BMC Plant Biol 8(1):79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yura K, Sulaiman S, Hatta Y, Shionyu M, Go M (2009) RESOPS: a database for analyzing the correspondence of RNA editing sites to protein three-dimensional structures. Plant Cell Physiol 50(11):1865–1873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zehrmann A, van der Merwe JA, Verbitskiy D, Brennicke A, Takenaka M (2008) Seven large variations in the extent of RNA editing in plant mitochondria between three ecotypes of Arabidopsis thaliana. Mitochondrion 8(4):319–327

    Article  PubMed  CAS  Google Scholar 

  • Zhang L-Y, Yang Y-F, Niu D-K (2010) Evaluation of models of the mechanisms underlying intron loss and gain in Aspergillus fungi. J Mol Evol 71(5–6):364–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Scientific and Technical Research Council (CONICET) in Argentina.

Author information

Authors and Affiliations

Authors

Contributions

MVSP and AAE conceived and designed the experiments. AAE and CLG designed the editing site annotation pipeline. AAE implemented computational scripts, and performed the experiments. CLG performed experiments of ancestral state reconstruction. MVSP and AAE analyzed the data. AAE prepared figures and supplementary materials. AAE, MVSP, and CLG wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alejandro A. Edera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 4008 KB)

Supplementary material 2 (XLSX 14 KB)

11103_2018_734_MOESM3_ESM.gz

ESM3: CDS sequences used for identifying all the editing sites, and nucleotide alignments of the 24 protein-coding genes that were conserved across the 17 angiosperm mitochondrial genomes. Gaps indicate sites with <10 reads, and uppercase C nucleotides depict editing sites. (GZ 200 KB)

Supplementary material 4 (XLSX 118 KB)

Supplementary material 5 (XLSX 90 KB)

Supplementary material 6 (PDF 24 KB)

Supplementary material 7 (PDF 50 KB)

Supplementary material 8 (PDF 40 KB)

Supplementary material 9 (PDF 1,109 KB)

Supplementary material 10 (PDF 420 KB)

Supplementary material 11 (XLSX 50 KB)

Supplementary material 12 (XLSX 85 KB)

Supplementary material 13 (XLSX 13 KB)

Supplementary material 14 (PDF 26 KB)

Supplementary material 15 (XLSX 9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edera, A.A., Gandini, C.L. & Sanchez-Puerta, M.V. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. Plant Mol Biol 97, 215–231 (2018). https://doi.org/10.1007/s11103-018-0734-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0734-9

Keywords

Navigation