Skip to main content
Log in

Expression of a DREB 5-A subgroup transcription factor gene from Ricinus communis (RcDREB1) enhanced growth, drought tolerance and pollen viability in tobacco

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Climate change has increased the frequency of long periods of drought, affecting crop cultivation worldwide. Losses due to water stress exceed 10% of world production of major crops, reaching three-quarters of production areas, with severe economic losses. Therefore, the generation of environmental stress-tolerant genotypes that are more efficient in water use is extremely important. We have previously isolated and characterized a DREB transcription factor coding gene, named RcDREB1, from castor bean (Ricinus communis L.), which probably belongs to the CBF/DREB subfamily subgroup A-5. Aiming to develop drought-tolerant lines, we have stably introduced and expressed the RcDREB1 transgene into tobacco. Transgenic lines have revealed an enhanced drought tolerance. Genetically modified lines cultivated under water deficit presented a higher photosynthetic rate, stomatal conductance, leaf water potential and leaf water content when compared to the control. Transgenic lines revealed lower transpiration rates. In addition, biometric analyses showed that transgenic lines cultivated under water stress presented higher biomass, higher fresh and dry weight and higher plant height than the non-transgenic lines. After re-watering, transgenic lines recovered faster than non-transgenic plants. Moreover, pollen grains from transgenic plants revealed a remarkable increase in viability after exposure to heat (38 °C) and desiccation stresses. The results presented here will be the foundation for production of commercial crops that are more tolerant to environmental stresses and long-life pollen grains, increasing pollination and in consequence, productivity.

Key message

A DREB gene isolated from castor bean was expressed in tobacco plants. Genically modified plants presented a remarkable tolerance to water-deific stress and pollens were more tolerance to high temperatures and dehydration. These results paved the way for the development of drought tolerant and high yield crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DREB :

Dehydration Responsive Element Binding

RcDREB1 :

Ricinus communis Dehydration Responsive Element Binding

CBF :

C-repeat binding factor

TFs :

Transcription Factors

AP2/ERF :

APETALA2/Ethylene Responsive Factor

ERF :

Ethylene Responsive Element Binding Factor

DRE/CRT :

Dehydration Responsive Element/C-repeat

ABA :

Abscisic Acid

Gus :

β-glucuronidase gene

CaMV :

Cauliflower mosaic virus

AMV :

Alfalfa mosaic virus

PAT :

Phosphinothricin Acetyl-Transferase

RWC :

Relative water content

FW :

Fresh Weight

MS :

Murashige and Skoog basal salt mixture growth medium

WT :

Wild Type

References

  • Abiri R, Shaharuddin NA, Maziah M, Yusof ZNB, Atabaki N, Sahebi M, Valdiani A, Kalhori N, Azizi P, Hanafi MM (2017) Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ Exp Bot 134:33–44

    Article  CAS  Google Scholar 

  • Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  Google Scholar 

  • Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI. Singh NK (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91:385–395

    Article  CAS  Google Scholar 

  • An JP, Zhang XW, Bi SQ, You CX, Wang XF, Hao YJ (2020) The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. Plant J 101:573–589. https://doi.org/10.1111/tpj.14555

    Article  CAS  PubMed  Google Scholar 

  • Andrade CM, Tinoco MLP, Rieth AF, Maia FCO, Aragão FJL (2016) Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathol 65:626–632. https://doi.org/10.1111/ppa.12447

    Article  CAS  Google Scholar 

  • Bouaziz D, Pirrello J, Ben Amor H, Hammami A, Charfeddine M, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2012) Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol Biochem 60:98–108. https://doi.org/10.1016/j.plaphy.2012.07.029

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Article  CAS  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang X (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198. https://doi.org/10.1007/s10529-008-9811-5

    Article  CAS  PubMed  Google Scholar 

  • Chibi F, Angosto T, Matilla A (1995) Variations of the patterns of abscisic acid and proline during maturation of Nicotiana tabacum pollen grains. J Plant Physiol 147:3–4

    Article  Google Scholar 

  • Cipriano TM, Moraes AT, Aragão FJL (2013) Characterization of a pollen-specific and desiccation-associated AP2/ERF type transcription factor gene from castor bean (Ricinus communis L.). Int J Plant Biol 4:1–7

    Article  Google Scholar 

  • Datla RS, Hammerlindl JK, Pelcher LE, Crosby WL, Selvaraj G (1991) A bifunctional fusion between beta-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plants. Gene 101:239–246

    Article  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  Google Scholar 

  • Flexas J, Niinemets U, Gallé A, Barbour MM, Centritto M, Diaz-Espejo A, Douthe C, Galmés J, Ribas-Carbo M, Rodriguez PL, Rosselló F, Soolanayakanahally R, Tomas M, Wright IJ, Farquhar GD, Medrano H (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:45–59

    Article  CAS  Google Scholar 

  • Hafez EM, Omara AED, Alhumaydhi FA, El-Esawi MA (2020) Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiol Plant 1:16. https://doi.org/10.1111/ppl.13261

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (2003) A regulatory role for proline metabolism in stimulating Arabidopsis thaliana seed germination. Plant Growth Regul 39:41–50

    Article  CAS  Google Scholar 

  • Haworth M, Marino G, Cosentino SL, Brunetti C, De Carlo A, Avola G, Riggi E, Loreto F, Centritto F (2018) Increased free abscisic acid during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.). Env Exp Bot 147:116–124. https://doi.org/10.1016/j.envexpbot.2017.11.002

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Sci 227:1229–1231. https://doi.org/10.1007/s11816-020-00598-6

    Article  CAS  Google Scholar 

  • Huang X, Song X, Chen R, Zhang B, Li C, Liang Y, Qiu L, Fan Y, Zhou Z, Zhou H, Lakshmanan P, Li Y, Wu J (2020) Genome-wide analysis of the DREB subfamily in Saccharum spontaneum reveals their functional divergence during cold and drought stresses. Front Genet 10:1–16. https://doi.org/10.3389/fgene.2019.01326

    Article  CAS  Google Scholar 

  • Jaleel C, Manivannan P, Wahid A, Farooq M, Al-Juburi H, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311. https://doi.org/10.1111/pce.12157

    Article  CAS  PubMed  Google Scholar 

  • Khan MS (2011) The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnol Biotechnol Equip 25:2433–2442

    Article  CAS  Google Scholar 

  • Kizis D, Pagès M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30:679–689

    Article  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  Google Scholar 

  • Leng G, Hall J (2019) Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ 654:811–821

    Article  CAS  Google Scholar 

  • Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S (2013) Embolism resistance as a key mechanism to understand adaptive plant strategies. Curr Opin Plant Biol 16:287–292

    Article  Google Scholar 

  • Li L, Zhao J, Zhao Y, Lu X, Zhou Z, Zhao C, Xu G (2016) Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Sci Rep 6:37976. https://doi.org/10.1038/srep37976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhao Q, Zhu D, Yu J (2018) A DREB-like transcription factor from maize (Zea mays), ZmDREB4.1, plays a negative role in plant growth and development. Front Plant Sci 9:1–15. https://doi.org/10.3389/fpls.2018.00395

    Article  Google Scholar 

  • Li Q, Qin Y, Hu X, Ding H, Xiong X (2020) Transcriptome analysis uncovers the gene expression profile of salt-stressed potato (Solanum tuberosum L.). Sci Rep 10:5411. https://doi.org/10.1038/s41598-020-62057-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Li X, Zhang D, Gao B, Yang H, Wang Y, Guan K, Wood AJ (2017) ScDREB8, a novel A-5 type of DREB gene in the desert moss Syntrichia caninervis, confers salt tolerance to Arabidopsis. Plant Physiol Biochem 120:242–251

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2 type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Gen Genom 283:185–196

    Article  CAS  Google Scholar 

  • Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210. https://doi.org/10.1016/j.scitotenv.2020.142210

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96. https://doi.org/10.1016/j.bbagrm.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  • Negi S, Tak H, Ganapathi TR (2018) A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content. Plant Mol Biol 96:457–471. https://doi.org/10.1007/s11103-018-0710-4

    Article  CAS  PubMed  Google Scholar 

  • Negin B, Yaaran A, Kelly G, Zait Y, Moshelion M (2019) Mesophyll abscisic acid restrains early growth and flowering but does not directly suppress photosynthesis. Plant Physiol 180:910–925. https://doi.org/10.1104/pp.18.01334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49. https://doi.org/10.1111/nph.12613

    Article  PubMed  Google Scholar 

  • Pacini E, Dolferus R (2019) Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. Front Plant Sci 10:1–15. https://doi.org/10.3389/fpls.2019.00679

    Article  Google Scholar 

  • Peleg Z, Apse MP, Blumwald E (2011) Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Adv Bot Res 57:405–443

    Article  CAS  Google Scholar 

  • Reis RR, da Cunha BADB, Martins PK, Martins MTB, Alekcevetch JC, Chalfun-Júnior A, Andrade AC, Ribeiro AP, Qin F, Mizoi J, Yamaguchi-Shinozaki K (2014) Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci 221:59–68

    Article  Google Scholar 

  • Ren M, Wang Z, Xue M, Wang X, Zhang F, Zhang Y, Zhang W, Wang M (2019) Constitutive expression of an A-5 subgroup member in the DREB transcription factor subfamily from Ammopiptanthus mongolicus enhanced abiotic stress tolerance and anthocyanin accumulation in transgenic Arabidopsis. PLoS One 14(10):e0224296. https://doi.org/10.1371/journal.pone.0224296 ( Erratum in: PLoS One 14(12):e0227290)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotsch AH, Kopka J, Feussner I, Ischebeck T (2017) Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. Plant J 92:129–146. https://doi.org/10.1111/tpj.13633

    Article  CAS  PubMed  Google Scholar 

  • Santos MP, Zandonadi DB, de Sá AFL, Costa EP, de Oliveira CJL, Perez LEP, Façanha AR, Bressan-Smith R (2020) Abscisic acid-nitric oxide and auxin interaction modulates salt stress response in tomato roots. Theor Exp Plant Physiol 32:301–313

    Article  CAS  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genom 283:233–241

    Article  CAS  Google Scholar 

  • Sharma P, Singh R, Sehrawat N (2020) A critical review on: significance of floral homeotic APETALA2 gene in plant system. J Appl Pharm Sci 10:124–130. https://doi.org/10.7324/JAPS.2020.101017

    Article  CAS  Google Scholar 

  • Shinwari ZK, Jan SA, Nakashima K, Yamaguchi-Shinozaki K (2020) Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol 14:151–162

    Article  Google Scholar 

  • Srivastava R, Kumar R (2019) The expanding roles of APETALA2/Ethylene responsive factors and their potential applications in crop improvement. Brief Funct Genom 18:240–254

    Article  CAS  Google Scholar 

  • Strizhov N, Abrahám E, Okrész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569. https://doi.org/10.1046/j.1365-313x.1997.00557.x

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Looi LS, Guo S, He Z, Gan ES, Huang J, Xu Y, Wee WY, Ito T (2014) Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Sci 343:1248559

    Article  Google Scholar 

  • Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28. https://doi.org/10.1111/j.1365-313X.2007.03318.x

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K (2020) Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication. Front Plant Sci 11:1–14. https://doi.org/10.3389/fpls.2020.556972

    Article  Google Scholar 

  • Taleisnik E, Peyrano G, Córdoba A, Arias C (1999) Water retention capacity in root segments differing in the degree of exodermis development. Ann Bot 83:19–27

    Article  Google Scholar 

  • Upadhyay RK, Gupta A, Soni D, Garg R, Pathre UV, Nath P, Sane AP (2017) Ectopic expression of a tomato DREB gene affects several ABA processes and influences plant growth and root architecture in an age-dependent manner. J Plant Physiol 214:97–107. https://doi.org/10.1016/j.jplph.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  • Vieira PM, Santos MP, Andrade CM, Souza-Neto OA, Ulhoa CJ, Aragão FJL (2017) Overexpression of an aquaglyceroporin gene from Trichoderma harzianum improves water-use efficiency and drought tolerance in Nicotiana tabacum. Plant Physiol Biochem 121:38–47. https://doi.org/10.1016/j.plaphy.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ji H, Yuan B, Wang S, Su C, Yao B, Zhao H, Li X (2015) ABA signalling is fine-tuned by antagonistic HAB1 variants. Nat Commun 6:1–15. https://doi.org/10.1038/ncomms9138

    Article  Google Scholar 

  • Xie M, Wu D, Duan G, Wang L, He R, Li X, Tang D, Zhao X, Liu X (2014) AtWNK9 is regulated by ABA and dehydration and is involved in drought tolerance in Arabidopsis. Plant Physiol Biochem 77:73–83. https://doi.org/10.1016/j.plaphy.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Cui Y, Wang M, Xia X (2017) Overexpression of a novel MYB-related transcription factor, OsMYBR1, confers improved drought tolerance and decreased ABA sensitivity in rice. Biochem Biophys Res Commun 490:1355–1361. https://doi.org/10.1016/j.bbrc.2017.07.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant No. 307111/2018-0). TFCR was supported by a fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Funding

Funding was provided by Empresa Brasileira de Pesquisa Agropecuária, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco José Lima Aragão.

Additional information

Communicated by Francisco de Assis Alves Mourão Filho.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Rego, T.F.C., Santos, M.P., Cabral, G.B. et al. Expression of a DREB 5-A subgroup transcription factor gene from Ricinus communis (RcDREB1) enhanced growth, drought tolerance and pollen viability in tobacco. Plant Cell Tiss Organ Cult 146, 493–504 (2021). https://doi.org/10.1007/s11240-021-02082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02082-7

Keywords

Navigation