Skip to main content
Log in

Hairy roots of ‘dashmula’ plant Uraria picta as a promising alternative to its medicinally valued true roots - functional and metabolomic analysis

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Uraria picta is a medicinally important ‘dashmula’ plant found in dry grasslands of India and is facing overexploitation in wilds. Its roots have been used in traditional treatments while in modern medicine it is known to promote osteogenesis and possess anti-cancer properties. Rhizobium rhizogenes ATCC-15834 was used to induce hairy roots (HR) in in vitro raised U. picta seedlings. This is the first report of U. picta HR induction and characterization. The comparative biochemical and functional analysis showed that U. picta true roots (TR) and HR extracts display high free radical scavenging activity (~ 84%) and higher cytotoxic activity in cancer cell lines HeLa (71.18%) and MCF-7 (89.36%) as compared to the normal cell line HEK (58.87%). There was a twofold increase in HR biomass upon jasmonic acid (JA) treatment, while salicylic acid (SA) and abscisic acid (ABA) had no significant effects, though ABA led to increase in the HR thickness. In comparative metabolomics HR-LC/MS study, 39% metabolites were commonly detected in TR, HR and Hairy root exudates (HREx). Major chemical classes of the metabolites detected were lipids, benzenoids and organic acids represented by glutinone; estra-1,3,5(10)-triene-3,6 beta, 17 beta-triol triacetate; azokisaponin III; gingerol, shogaol and mucronine B with well-known therapeutic potentials. Additionally, a high proportion of unknown masses were also found in U. picta TR, HR and HREx, which needs further investigation. Due to the parallels in the biochemical, metabolomic and functional aspects of TR and HR, U. picta HR represents a sustainable alternative source of U. picta bioactives.

Graphic abstract

Key message

Comparative metabolomics reveals similarities in the hairy roots and true roots of Uraria picta, making it a suitable biotechnological alternative for biosynthesis of specialized metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TR:

True roots

HR:

Hairy roots

HREx:

Hairy root exudates

References

  • Amani S, Mohebodini M, Khademvatan S, Jafari M (2020) Agrobacterium rhizogenes mediated transformation of Ficus carica L. for the efficient production of secondary metabolites. J Sci Food Agric 100:2185–2197

    Article  CAS  Google Scholar 

  • Basu A, Joshi RK, Jha S (2015) Genetic transformation of Plumbago zeylanica with Agrobacterium rhizogenes strain LBA 9402 and characterization of transformed root lines. Plant Tissue Cult Biotechnol 25:21–35

    Article  Google Scholar 

  • Bhattacharya A, Datta AK (2010) Uraria picta: an overview. Med Aromat Plant Sci Biotechnol 4:1–4

    Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495. https://doi.org/10.1007/s00299-008-0575-0

    Article  CAS  PubMed  Google Scholar 

  • Chung IM, Rekha K, Rajakumar G, Thiruvengadam M (2016) Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa). 3 Biotech 6:1–16. https://doi.org/10.1007/s13205-016-0492-9

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21. https://doi.org/10.1007/BF02712670

    Article  CAS  Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interact 8(4):532–537. https://doi.org/10.1094/MPMI-8-0532

    Article  CAS  PubMed  Google Scholar 

  • Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS (2016) ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 8:61

    Article  Google Scholar 

  • Duwiejua M, Zeitlin IJ, Gray AI, Waterman PG (1999) The anti-inflammatory compounds of Polygonum bistorta: Isolation and characterisation. Planta Med 65:371–374. https://doi.org/10.1055/s-2006-960791

    Article  CAS  PubMed  Google Scholar 

  • Gabr AM, Mabrok HB, Abdel-Rahim EA, El-Bahr M, Smetanska I (2018) Determination of lignans, phenolic acids and antioxidant capacity in transformed hairy root culture of Linum usitatissimum. Nat Prod Res 32:1867–1871

    Article  CAS  Google Scholar 

  • Garg N, Garg M, Maan AS, Sandhu BS, Mittal S, Goyal S (2012) Phytochemical studies and antianxiey activity of Uraria picta leaves. J Pharm Res Opi 2:39–40

    CAS  Google Scholar 

  • Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon F (2020) Hairy root cultures: a versatile tool with multiple applications. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00033

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashemi SM, Naghavi MR (2016) Production and gene expression of morphinan alkaloids in hairy root culture of Papaver orientale L. using abiotic elicitors. Plant Cell Tissue Org Cult 125:31–41

    Article  CAS  Google Scholar 

  • Horiuchi N, Nakagawa K, Sasaki Y, Minato K, Fujiwara Y, Nezy K, Ohe Y, Saijo N (1988) In vitro antitumor activity of mitomycin C derivative (RM-49) and new anticancer antibiotics (FK973) against lung cancer cell lines determined by tetrazolium dye (MTT) assay. Cancer Chemother Pharmacol 22:246–250

    Article  CAS  Google Scholar 

  • Huang P, Xia L, Liu W, Jiang R, Liu X, Tang Q, Xu M, Yu L, Tang Z, Zeng J (2018) Hairy root induction and benzylisoquinoline alkaloid production in Macleaya cordata. Sci Rep 8:1–9

    Google Scholar 

  • Itoh T, Kita N, Kurokawa Y, Kobayashi M, Horio F, Furuichi Y (2004) Suppressive effect of a hot water extract of adzuki beans (Vigna angularis) on hyperglycemia after sucrose loading in mice and diabetic rats. Biosci Biotechnol Biochem 68:2421–2426. https://doi.org/10.1271/bbb.68.2421

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Itoh Y, Hibasami H, Katsuzaki H (2005) Isolation of a substance inducing apoptosis of cultured human gastric cancer cells from a hot-water extract of Adzuki (Vigna angularis). Nippon Eiyo Shokuryo Gakkaishi 58:281–287. https://doi.org/10.4327/jsnfs.58.281

    Article  CAS  Google Scholar 

  • Jiang Z-Y, Bai X-S, Liang H, Wang C, Li W, Guo J, Huang X (2013) Cytotoxic flavanes from Uraria clarkei. J Asian Nat Prod Res 15:979–984

    Article  CAS  Google Scholar 

  • Khomtchouk BB, Hennessy JR, Wahlestedt C (2017) shinyheatmap: ultra fast low memory heatmap web interface for big data genomics. PLoS ONE 12:e0176334

    Article  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. Vitro Cell Dev Biol Plant 38:1–10

    Article  CAS  Google Scholar 

  • Li B, Wang B, Li H, Peng L, Ru M, Liang Z, Yan X, Zhu Y (2016) Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation. Protoplasma 253:87–100

    Article  CAS  Google Scholar 

  • Liu R, Zheng Y, Cai Z, Xu B (2017) Saponins and flavonoids from adzuki Bean (Vigna angularis L.) ameliorate high-fat diet-induced obesity in ICR mice. Front Pharmacol 8:687. https://doi.org/10.3389/fphar.2017.00687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malairajan P, Gopalakrishnan G, Narasimhan S, Jessi Kala Veni K (2006) Analgesic activity of some Indian medicinal plants. J Ethnopharmacol 106:425–428

    Article  CAS  Google Scholar 

  • Mao Y-W, Lin R-D, Hung H-C, Lee M-H (2014) Stimulation of osteogenic activity in human osteoblast cells by edible Uraria crinita. J Agric Food Chem 62:5581–5588

    Article  CAS  Google Scholar 

  • Mishra PK, Singh N, Ahmad G, Dube A, Maurya R (2005) Glycolipids and other constituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities. Bioorg Med Chem Lett 15:4543–4546

    Article  CAS  Google Scholar 

  • Moco S, Vervoort J, Moco S, Bino R, De Vos R (2007) Metabolomics technologies and metabolite identification. Trends Anal Chem 26:855–866. https://doi.org/10.1016/j.trac.2007.08.003

    Article  CAS  Google Scholar 

  • Mongalo NI, Mashele SS, Makhafola TJ (2020) Ziziphus mucronata Willd. (Rhamnaceae): it’s botany, toxicity, phytochemistry and pharmacological activities. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03708

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemoto K, Hara M, Suzuki M, Seki H, Oka A, Muranaka T, Mano Y (2009) Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signal Behav 4:1145–1147

    Article  CAS  Google Scholar 

  • Odubanjo O (2013) Antioxidant and anticholinesterase activities of aqueous extract of Uraria picta (Jacq.) DC. Afr J Pharm Pharmacol 7:2768–2773. https://doi.org/10.5897/ajpp2013.3899

    Article  Google Scholar 

  • Okada T, Mochamad Afendi F, Altaf-Ul-Amin M, Takahashi H, Nakamura K, Kanaya S (2010) Metabolomics of medicinal plants: the importance of multivariate analysis of analytical chemistry data. Curr Comput Aided-Drug Des 6:179–196. https://doi.org/10.2174/157340910791760055

    Article  CAS  PubMed  Google Scholar 

  • Oliveros JC (2007–2015) Venny. An interactive tool for comparing lists with Venn's diagrams. Venny 2.1.0. https://bioinfogp.cnb.csic.es/tools/venny/. Accessed from 1st May 2020 to 30th August 2020

  • Pathak JM, Krishnamurthy R, Chandorkar MS, Gulkari V, Gupta R (2005) Identification of high yielding genotypes of Dashmool Shalparni (Desmodium gangeticum) drug plant and its cultivation under high density planting. Indian J Hortic 62(4):378–384

    Google Scholar 

  • Pavlov A, Georgiev V, Ilieva M (2005) Betalain biosynthesis by red beet (Beta vulgaris L.) hairy root culture. Process Biochem 40:1531–1533. https://doi.org/10.1016/j.procbio.2004.01.001

    Article  CAS  Google Scholar 

  • Rahman MM, Gibbons S, Gray AI (2007) Isoflavanones from Uraria picta and their antimicrobial activity. Phytochemistry 68:1692–1697

    Article  CAS  Google Scholar 

  • Semwal RB, Semwal DK, Combrinck S, Viljoen AM (2015) Gingerols and shogaols: important nutraceutical principles from ginger. Phytochemistry 117:554–568

    Article  CAS  Google Scholar 

  • Shajahan A, Thilip C, Faizal K, Mehaboob V, Raja P, Aslam A, Kathiravan K (2017) An efficient hairy root system for withanolide production in Withania somnifera (L.) Dunal. Production of plant derived natural compounds through hairy root culture. Springer, New York, pp 133–143

    Chapter  Google Scholar 

  • Sharifi S, Sattari TN, Zebarjadi A, Majd A, Ghasempour H (2014) The influence of Agrobacterium rhizogenes on induction of hairy roots and ß-carboline alkaloids production in Tribulus terrestris L. Physiol Mol Biol Plants 20:69–80

    Article  CAS  Google Scholar 

  • Shi M, Luo X, Ju G, Li L, Huang S, Zhang T, Wang H, Kai G (2016) Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. J Agric Food Chem 64:2523–2530

    Article  CAS  Google Scholar 

  • Shi M, Liao P, Nile SH, Georgiev MI, Kai G (2020) Biotechnological exploration of transformed root culture for value-added products. Trends Biotechnol 39:137–149. https://doi.org/10.1016/j.tibtech.2020.06.012

    Article  CAS  PubMed  Google Scholar 

  • Sillapachaiyaporn C, Chuchawankul S (2020) HIV-1 protease and reverse transcriptase inhibition by tiger milk mushroom (Lignosus rhinocerus) sclerotium extracts: In vitro and in silico studies. J Tradit Complement Med 10:396–404. https://doi.org/10.1016/j.jtcme.2019.08.002

    Article  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  CAS  Google Scholar 

  • Waghire HB, Survase S, Pokle DS (2011) A preliminary study on the germination of Uraria picta (Jacq.) DC. J Ecobiotechnol 3(3):28–30

  • Wang C, Liang H, Guo J, Huang X, Liu X, Wang J (2011) Studies on chemical constituents from leaves of Uraria lacei. China J Chin Mater Med 36:2676–2679

    CAS  Google Scholar 

  • Yadav AK, Yadav D, Shanker K, Verma R, Saxena A, Gupta M (2009) Flavone glycoside based validated RP-LC method for quality evaluation of prishniparni (Uraria picta). Chromatographia 69:653–658. https://doi.org/10.1365/s10337-009-0963-9

    Article  CAS  Google Scholar 

  • Yang Y, Hu Z, Luo Z, Xue Y, Yao G, Wang Y, Zhang Y (2014) A new sesquilignan glucoside from Uraria sinensis. Molecules 19:1178–1188

    Article  Google Scholar 

  • Zaheer M, Reddy VD, Giri CC (2016) Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae). Nat Prod Res 30:1542–1547

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The contribution of Mr. Bhanudas Chavhan for providing the plant tissue and seeds needed for the experiments and Dr. Gauri Abhyankar for guiding us on hairy root cultures. The authors would like to thank Dr. Sumita Jha, Dr. Pijush Paul from University of Calcutta, India for kindly providing us with some R. rhizogenes strains and guiding about its culture and Dr. Bhushan Patwardhan, Dr. Uma Chandran from Department of Health Sciences, SPPU, Pune, India for their thoughtful insights.

Funding

This work was supported by the BioCARe project, Department of Biotechnology (DBT), Government of India to VAT and UPE-II (Biotechnology and Biodiversity) project, Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India. The funding was provided by Department of Biotechnology , Ministry of Science and Technology (Grant No. BT/BioCARe/07/320/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaijayanti A. Tamhane.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Amita Bhattacharya.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 210 KB)

11240_2021_2024_MOESM2_ESM.pptx

Supplementary file2 (PPTX 865 KB) Supplementary figure S1: Analysis of the differentially expressed metabolites in U. picta true roots (TR), hairy roots (HR) and hairy root exudates (HREx) a VIP score plot, b Heat map of Top 50 differentially expressed metabolites ranked with respect to their relative abundance, p value and fold change of metabolites of differential metabolites identified in all three groups. In the color scale of abundance, red indicates high while blue indicates low relative concentrations of the metabolites.

11240_2021_2024_MOESM3_ESM.pptx

Supplementary file3 (PPTX 518 KB) Supplementary figure S2: Pathway analysis by Metaboanalyst 4.2 tool. a commonly identified metabolites belonged to highly significant pathways like one carbon pool by folate, arachidonic acid metabolism, pantothenate and CoA biosynthesis pathways. b differential metabolites belonged to Phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan and biotin metabolism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, S., Hedda, G.V., Kankariya, A.J. et al. Hairy roots of ‘dashmula’ plant Uraria picta as a promising alternative to its medicinally valued true roots - functional and metabolomic analysis. Plant Cell Tiss Organ Cult 145, 533–544 (2021). https://doi.org/10.1007/s11240-021-02024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02024-3

Keywords

Navigation