Skip to main content
Log in

Cloning and functional analysis of EpGHQH1 in shikonin production of Echium plantagineum

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Shikonins are the main naphthoquinones in the root periderm of Echium plantagineum, as well as the hypocotyl and root hairs of young seedlings. These red pigments can be used as dyes or for medicinal uses since ancient times. Geranylhydroquinone 3″-hydroxylase (GHQH) has recently been identified to catalyze the C-3″ site of geranylhydroquinone to form 3″-hydroxy-geranyl-hydroquinone in shikonin biosynthetic pathway. In this study, we cloned a geranylhydroquinone 3″-hydroxylase candidate gene (EpGHQH1) from E. plantagineum, and further characterized its function in shikonin biosynthesis using the hairy root system by overexpression and RNA interference strategies. The obtained results showed that overexpression of EpGHQH1 increased the accumulation of shikonins, showing 2.1-fold higher in acetylshikonin yield than that of control lines. On the contrary, down-regulation of EpGHQH1 resulted in a decline in shikonin production. Furthermore, the EpGHQH1 expression levels in germinated seedlings showed a high positive relation with shikonin accumulation. These findings demonstrated the function of EpGHQH1 in enhancing shikonin biosynthesis of E. plantagineum, and provided the first example of transgenic hairy root system from E. plantagineum for functional analysis of genes in metabolite biosynthesis.

Key message

We reported a possible GHQH gene (EpGHQH1), and demonstrated its positive role in shikonin biosynthesis of E. plantagineum with the transgenic hairy root system by overexpression and RNAi strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and supplemental materials.

Code availability

Not applicable.

References

  • Abd El-Mawla A (2010) Effect of certain elicitors on production of pyrrolizidine alkaloids in hairy root cultures of Echium rauwolfii. Pharmazie 65(3):224–226

    CAS  PubMed  Google Scholar 

  • Albreht A, Vovk I, Simonovska B, Srbinoska M (2009) Identification of shikonin and its ester derivatives from the roots of Echium italicum L. J Chromatogr A 1216(15):3156–3162

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42(4):567–585

    Article  CAS  PubMed  Google Scholar 

  • Cequier-Sánchez E, Rodríguez C, Dorta-Guerra R, Ravelo ÁG, Zárate R (2011) Echium acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production. BMC Biotechnol 11(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  • Collu G, Garcia AA, van der Heijden R, Verpoorte R (2002) Activity of the cytochrome P450 enzyme geraniol 10-hydroxylase and alkaloid production in plant cell cultures. Plant Sci 162(1):165–172

    Article  CAS  Google Scholar 

  • Eruygur N (2018) A simple isocratic high-perfomance liquid chromatography method for the simultaneous determination of shikonin derivatives in some Echium species growing wild in Turkey. Turk J Pharm Sci 15(1):38–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang R, Zou A, Zhao H, Wu F, Zhu Y, Zhao H, Liao Y, Tang RJ, Pang Y, Yang R (2016) Transgenic studies reveal the positive role of LeEIL-1 in regulating shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. BMC Plant Biol 16(1):121

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaisser S, Heide L (1996) Inhibition and regulation of shikonin biosynthesis in suspension cultures of Lithospermum. Phytochemistry 41(4):1065–1072

    Article  CAS  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots recent trends and applications. Biotechnol Adv 18(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Grigulis K, Sheppard A, Ash J, Groves R (2001) The comparative demography of the pasture weed Echium plantagineum between its native and invaded ranges. J Appl Ecol 38(2):281–290

    Article  Google Scholar 

  • Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346

    Article  CAS  PubMed  Google Scholar 

  • Hasenoehrl C, Schwach G, Ghaffari-Tabrizi-Wizsy N, Fuchs R, Kretschmer N, Bauer R, Pfragner R (2017) Anti-tumor effects of shikonin derivatives on human medullary thyroid carcinoma cells. Endocr Connect 6(2):53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höfer R, Dong L, André F, Ginglinger J-F, Lugan R, Gavira C, Grec S, Lang G, Memelink J, van der Krol S (2013) Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco) iridoid pathway. Metab Eng 20:221–232

    Article  PubMed  Google Scholar 

  • Höfer R, Boachon B, Renault H, Gavira C, Miesch L, Iglesias J, Ginglinger J-F, Allouche L, Miesch M, Grec S, Larbat R, Werck-Reichhart D (2014) Dual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides. Plant Physiol 166(3):1149–1161

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48(2):121–127

    Article  CAS  Google Scholar 

  • Ito Y, Onobori K, Yamazaki T, Kawamura Y (2011) Tigloylshikonin, a new minor shikonin derivative, from the roots and the commercial root extract of Lithospermum erythrorhizon. Chem Pharm Bull 59(1):117–119

    Article  CAS  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol-Plant 38(1):1–10

    Article  CAS  Google Scholar 

  • Lange BM, Severin K, Bechthold A, Heide L (1998) Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase for shikonin biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Planta 204(2):234–241

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Bhushan S, Sharma M, Ahuja PS (2016) Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit Rev Biotechnol 36(2):327–340

    Article  CAS  PubMed  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohara K, Muroya A, Fukushima N, Yazaki K (2009) Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid. Biochem J 421(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Ohara K, Mito K, Yazaki K (2013) Homogeneous purification and characterization of LePGT1-a membrane-bound aromatic substrate prenyltransferase involved in secondary metabolism of Lithospermum erythrorhizon. FEBS J 280(11):2572–2580

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou VP, Assimopoulou AN, Couladouros EA, Hepworth D, Nicolaou K (1999) The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew Chem Int Ed 38(3):270–301

    Article  Google Scholar 

  • Papageorgiou VP, Assimopoulou AN, Ballis AC (2008) Alkannins and shikonins: a new class of wound healing agents. Curr Med Chem 15(30):3248–3267

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Nakaya T, Shimizu Y, Rai M, Nakamura M, Suzuki H, Saito K, Yamazaki M (2018) De novo transcriptome assembly and characterization of Lithospermum officinale to discover putative genes involved in specialized metabolites biosynthesis. Planta Med 84(12/13):920–934

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Gara RK, Bhardwaj PK, Kaachra A, Malik S, Kumar R, Sharma M, Ahuja PS, Kumar S (2010) Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle) Johnston]. BMC Mol Biol 11(1):88

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoneczny D, Zhu X, Weston PA, Gurr GM, Callaway RM, Weston LA (2019) Production of pyrrolizidine alkaloids and shikonins in Echium plantagineum L. in response to various plant stressors. Pest Manag Sci 75(9):2530–2541

    Article  CAS  PubMed  Google Scholar 

  • Song W, Zhuang Y, Liu T (2020) Potential role of two cytochrome P450s obtained from Lithospermum erythrorhizon in catalyzing the oxidation of geranylhydroquinone during shikonin biosynthesis. Phytochemistry 175:112375

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27(1):29–43

    Article  CAS  PubMed  Google Scholar 

  • Staniforth V, Wang SY, Shyur LF, Yang NS (2004) Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor α promoter in vivo. J Biol Chem 279(7):5877–5885

    Article  CAS  PubMed  Google Scholar 

  • Takanashi K, Nakagawa Y, Aburaya S, Kaminade K, Aoki W, Saida-Munakata Y, Sugiyama A, Ueda M, Yazaki K (2019) Comparative proteomic analysis of Lithospermum erythrorhizon reveals regulation of a variety of metabolic enzymes leading to comprehensive understanding of the shikonin biosynthetic pathway. Plant Cell Physiol 60(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581(16):2929–2934

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang R, Liu T, Lv C, Liang J, Kang C, Zhou L, Guo J, Cui G, Zhang Y (2019) CYP76B74 catalyzes the 3″-hydroxylation of geranylhydroquinone in shikonin biosynthesis. Plant Physiol 179(2):402–414

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Weston PA, McCully M (2011) Production of bioactive napthoquinones by roots of Paterson’s curse (Echium plantagineum)—Implications for invasion success. Proceedings of the 18th Council of Australasian Weed Science Society Meeting, Melbourne 18, 677–686

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63(9):3445–3454

    Article  CAS  PubMed  Google Scholar 

  • Weston PA, Weston LA, Hildebrand S (2013) Metabolic profiling in Echium plantagineum: presence of bioactive pyrrolizidine alkaloids and napthoquinones from accessions across southeastern Australia. Phytochem Rev 12(4):831–837

    Article  CAS  Google Scholar 

  • Wu FY, Tang CY, Guo YM, Bian ZW, Fu JY, Lu GH, Qi JL, Pang YJ, Yang YH (2017) Transcriptome analysis explores genes related to shikonin biosynthesis in Lithospermeae plants and provides insights into Boraginales’ evolutionary history. Sci Rep 7(1):4477

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Inoue K, Li SM, Heide L (2000) Geranylhydroquinone 3″-hydroxylase, a cytochrome P-450 monooxygenase from Lithospermum erythrorhizon cell suspension cultures. Planta 210(2):312–317

    Article  CAS  PubMed  Google Scholar 

  • Yamamura Y, Ogihara Y, Mizukami H (2001) Cinnamic acid 4-hydroxylase from Lithospermum erythrorhizon: cDNA cloning and gene expression. Plant Cell Rep 20(7):655–662

    Article  CAS  Google Scholar 

  • Yazaki K, Ogawa A, Tabata M (1995) Isolation and characterization of two cDNAs encoding 4-coumarate: CoA ligase in Lithospermum cell cultures. Plant Cell Physiol 36(7):1319–1329

    CAS  PubMed  Google Scholar 

  • Yazaki K, Kataoka M, Honda G, Severin K, Heide L (1997) cDNA cloning and gene expression of phenylalanine ammonia-lyase in Lithospermum erythrorhizon. Biosci Biotech Biochem 61(12):1995–2003

    Article  CAS  Google Scholar 

  • Yazaki K, Kunihisa M, Fujisaki T, Sato F (2002) Geranyl diphosphate: 4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a key enzyme in shikonin biosynthesis. J Biol Chem 277(8):6240–6246

    Article  CAS  PubMed  Google Scholar 

  • Yoo S, Lee HY, Markkandan K, Moon S, Ahn YJ, Ji S, Ko J, Kim SJ, Ryu H, Hong CP (2019) Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes. BMC Genom 20(1):121

    Article  Google Scholar 

  • Zárate R, Cequier-Sánchez E, Rodríguez C, Dorta-Guerra R, El Jaber-Vazdekis N, Ravelo ÁG (2013) Improvement of polyunsaturated fatty acid production in Echium acanthocarpum transformed hairy root cultures by application of different abiotic stress conditions. ISRN Biotechnol 2013:169510

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang XY, Jia YP, Zhao Q, Wang WY, Zhang Z, Li W, Sun LC (2020) Ameliorative effect of acetylshikonin on cigarette smoke-induced lung inflammation in mice. J Asian Nat Prod Res 22(11):1078–1094

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Chang Q, Zhang D, Fang R, Wu F, Wang X, Lu G, Qi J, Yang Y (2015) Overexpression of LeMYB1 enhances shikonin formation by up-regulating key shikonin biosynthesis-related genes in Lithospermum erythrorhizon. Biol Plantarum 59(3):429–435

    Article  CAS  Google Scholar 

  • Zhu X, Skoneczny D, Weidenhamer JD, Mwendwa JM, Weston PA, Gurr GM, Callaway RM, Weston LA (2016) Identification and localization of bioactive naphthoquinones in the roots and rhizosphere of Paterson’s curse (Echium plantagineum), a noxious invader. J Exp Bot 67(12):3777–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Chu SJ, Luo YL, Fu JY, Tang CY, Lu GH, Pang YJ, Wang XM, Yang RW, Qi JL (2018) Involvement of LeMRP, an ATP-binding cassette transporter, in shikonin transport and biosynthesis in Lithospermum erythrorhizon. Plant Biol 20(2):365–373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Cheng-Yi Tang for his suggestions and discussion on design of the experiments.

Funding

This research was supported by the National Natural Science Foundation of China (Grant Nos. 31771413, U1903201, 31970321, 31670298), the Open Project Program from MOE Key Laboratory of Molecular Epigenetics of China, the Natural Science Foundation of Jiangsu Bureau of Science and Technology (Grant No. BK20191254), and the Program for Changjiang Scholars and Innovative Research Team in University from the Ministry of Education of China (Grant No. IRT_14R27).

Author information

Authors and Affiliations

Authors

Contributions

YHY, JLQ conceived and designed the experiments. JYF, HZ, and MKY performed the experiments. JYF, GHL, and MKY analyzed the data. GHL, WCJ, AF, XW, ZLW, RJF, BL, and TMY contributed to resources. JYF wrote the draft of the manuscript. YHY, JLQ, and GHL contributed to review and edit the manuscript. All authors carefully checked and approved the final manuscript.

Corresponding authors

Correspondence to Jinliang Qi or Yonghua Yang.

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Communicated by: Yi Li.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Lu, G., Yang, M. et al. Cloning and functional analysis of EpGHQH1 in shikonin production of Echium plantagineum. Plant Cell Tiss Organ Cult 144, 533–543 (2021). https://doi.org/10.1007/s11240-020-01976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01976-2

Keywords

Navigation