Abstract
The complex plant body is created by means of an elaborate system that dictates the differentiation of cells with distinctive features as well as proper growth and development. We have reviewed the literature-reported experimental evidence for post-translational modifications (PTM)s that modulate plant differentiation. We found that phosphorylation, ubiquitination, glycosylation, acetylation, and methylation are associated with plant differentiation. Phosphorylation mediated by MAPK within cytoplasm and nucleus facilitates plant differentiation. Convergence between phosphorylation, ubiquitination, and deacetylation is displayed in transcription repressor complexes modulating stem daughter, germ cell, and leaf differentiation. Reversible phosphorylation and deubiquitination made the phosphorylation and ubiquitination of PIN auxin transporters which supported the precise PIN-mediated auxin transport dynamic. The participation of several PTM types during plant cell differentiation suggests a new layer in the plant cell differentiation process. Efforts to develop deep mass spectrometry-based PTM identification could facilitate deciphering the interconnection of the variety of PTMs in this field.
Key message
Comprehensive revision of post-translational modifications associated with plant differentiation yields several post-translational modifications linked with molecular and cellular mechanisms modulating plant cell differentiation. Post-translational modification-enrichment coupled to advanced proteomics provide the resource for further discovery in this plant differentiation new layer.
This is a preview of subscription content, access via your institution.




Abbreviations
- SHR:
-
Shortroot
- TOM7:
-
Target of monopteros7
- E2F:
-
E2 factor
- DPB:
-
DP‐related genes
- CDKA:
-
Cyclin-dependent kinase A
- CycD3:
-
Cyclin-D3
- SCF:
-
SKP1-CUL1-F-box
- SKP2A:
-
S-Phase kinase-associated protein 2A
- BASL:
-
Breaking of asymmetry in the stomatal lineage
- SPCH:
-
Speechless
- EPF1:
-
Epidermal patterning factor1
- ERL1:
-
Erecta-Like1
- HDAC:
-
Histone deacetylase
- TPL/TPR:
-
Corepressors recruitment of topless/topless-related
- WOX5:
-
Wuschel5
- SPL:
-
Sporocytless
- TIE1:
-
TPC Interactor containing EAR Motif Protein1
- NFC103/MSI1:
-
MSI type nucleosome/chromatin assembly factor C/ Multicopy Suppressor of Ira1
- SNL1/SIN3-like:
-
Swi-Independent3-Like1/Swi-Independent3-Like1
- GEM:
-
GL2 expression modulator
- PAS2:
-
Antiphosphatase Pasticcino2
- DGL1:
-
Defective glycosylation1
- GCS1:
-
α-Glucosidase1
- mTOR:
-
Mammalian target of rapamycin
- PP2A:
-
Protein phosphatase 2A
- TAP46:
-
2A Phosphatase associated Protein46
- DUB:
-
Deubiquitinating enzymes
- VND7:
-
Vascular-related NAC Domain7
- TMT:
-
Tandem mass tag
- iTRAQ:
-
Isobaric tag for relative and absolute quantitation
References
Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8(3):249–256. https://doi.org/10.1038/ncb1369
Ahn CS, Cho HK, Lee DH, Sim HJ, Kim SG, Pai HS (2016) Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis. J Exp Bot 67(17):5217–5232. https://doi.org/10.1093/jxb/erw288
Alvarez S, Goodger JQ, Marsh EL, Chen S, Asirvatham VS, Schachtman DP (2006) Characterization of the maize xylem sap proteome. J Proteome Res 5(4):963–972. https://doi.org/10.1021/pr050471q
Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y (2007) Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA 104(46):18333–18338. https://doi.org/10.1073/pnas.0706403104
Belda-Palazon B, Rodriguez L, Fernandez MA, Castillo MC, Anderson EM, Gao C, Gonzalez-Guzman M, Peirats-Llobet M, Zhao Q, De Winne N, Gevaert K, De Jaeger G, Jiang L, Leon J, Mullen RT, Rodriguez PL (2016) FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and mediates its delivery to the vacuolar degradation pathway. Plant Cell 28(9):2291–2311. https://doi.org/10.1105/tpc.16.00178
Bhosale R, Maere S, De Veylder L (2019) Endoreplication as a potential driver of cell wall modifications. Curr Opin Plant Biol 51:58–65. https://doi.org/10.1016/j.pbi.2019.04.003
Bigeard J, Hirt H (2018) Nuclear signaling of plant MAPKs. Front Plant Sci 9:469. https://doi.org/10.3389/fpls.2018.00469
Blob B, Heo JO, Helariutta Y (2018) Phloem differentiation: an integrative model for cell specification. J Plant Res 131(1):31–36. https://doi.org/10.1007/s10265-017-0999-0
Boisson M, Gomord V, Audran C, Berger N, Dubreucq B, Granier F, Lerouge P, Faye L, Caboche M, Lepiniec L (2001) Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J 20(5):1010–1019. https://doi.org/10.1093/emboj/20.5.1010
Breda AS, Hazak O, Hardtke CS (2017) Phosphosite charge rather than shootward localization determines OCTOPUS activity in root protophloem. Proc Natl Acad Sci USA 114(28):E5721–E5730. https://doi.org/10.1073/pnas.1703258114
Caro E, Castellano MM, Gutierrez C (2007) A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 447(7141):213–217. https://doi.org/10.1038/nature05763
Chen WQ, Drapek C, Li DX, Xu ZH, Benfey PN, Bai SN (2019) Histone deacetylase HDA19 affects root cortical cell fate by interacting with SCARECROW. Plant Physiol 180(1):276–288. https://doi.org/10.1104/pp.19.00056
Cho H, Ryu H, Rho S, Hill K, Smith S, Audenaert D, Park J, Han S, Beeckman T, Bennett MJ, Hwang D, De Smet I, Hwang I (2014) A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nat Cell Biol 16(1):66–76. https://doi.org/10.1038/ncb2893
Cruz-Ramírez A, Diaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, Miskolczi P, Nieuwland J, Benjamins R, Dhonukshe P, Caballero-Perez J, Horvath B, Long Y, Mahonen AP, Zhang H, Xu J, Murray JA, Benfey PN, Bako L, Maree AF, Scheres B (2012) A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150(5):1002–1015. https://doi.org/10.1016/j.cell.2012.07.017
Da Costa M, Bach L, Landrieu I, Bellec Y, Catrice O, Brown S, De Veylder L, Lippens G, Inze D, Faure JD (2006) Arabidopsis PASTICCINO2 is an antiphosphatase involved in regulation of cyclin-dependent kinase A. Plant Cell 18(6):1426–1437. https://doi.org/10.1105/tpc.105.040485
del Pozo JC, Boniotti MB, Gutierrez C (2002) Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCFAtSKP2 pathway in response to light. Plant Cell 14(12):3057–3071. https://doi.org/10.1105/tpc.006791
del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C (2006) The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell 18(9):2224–2235. https://doi.org/10.1105/tpc.105.039651
Ebel C, Mariconti L, Gruissem W (2004) Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429(6993):776–780. https://doi.org/10.1038/nature02637
Endo M, Shimizu H, Araki T (2016) Rapid and simple isolation of vascular, epidermal and mesophyll cells from plant leaf tissue. Nat Protoc 11(8):1388–1395
Facette MR, Shen Z, Björnsdóttir FR, Briggs SP, Smith LG (2013) Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development. Plant Cell 25(8):2798–2812. https://doi.org/10.1105/tpc.113.112227
Galichet A, Hoyerova K, Kaminek M, Gruissem W (2008) Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. Plant Physiol 146(3):1155–1164. https://doi.org/10.1104/pp.107.107425
Gallagher KL, Paquette AJ, Nakajima K, Benfey PN (2004) Mechanisms regulating SHORT-ROOT intercellular movement. Curr Biol 14(20):1847–1851. https://doi.org/10.1016/j.cub.2004.09.081
Gutierrez C, Ramirez-Parra E, Castellano MM, del Pozo JC (2002) G(1) to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol 5(6):480–486
Han SK, Torii KU (2019) Linking cell cycle to stomatal differentiation. Curr Opin Plant Biol 51:66–73. https://doi.org/10.1016/j.pbi.2019.03.010
Houbaert A, Zhang C, Tiwari M, Wang K, de Marcos SA, Savatin DV, Urs MJ, Zhiponova MK, Gudesblat GE, Vanhoutte I, Eeckhout D, Boeren S, Karimi M, Betti C, Jacobs T, Fenoll C, Mena M, de Vries S, De Jaeger G, Russinova E (2018) POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Nature 563(7732):574–578. https://doi.org/10.1038/s41586-018-0714-x
Hussey SG, Mizrachi E, Groover A, Berger DK, Myburg AA (2015) Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem. BMC Plant Biol 15:117. https://doi.org/10.1186/s12870-015-0499-0
Inzé D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105. https://doi.org/10.1146/annurev.genet.40.110405.090431
Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. https://doi.org/10.1038/srep00090
Ki D, Sasayama D, Cho HT (2016) The M3 Phosphorylation site is required for trafficking and biological roles of PIN-FORMED1, 2, and 7 in Arabidopsis. Front Plant Sci 7:1479. https://doi.org/10.3389/fpls.2016.01479
Krysan PJ, Colcombet J (2018) Cellular complexity in MAPK signaling in plants: questions and emerging tools to answer them. Front Plant Sci 9:1674. https://doi.org/10.3389/fpls.2018.01674
Kumar S, Kumar K, Pandey P, Rajamani V, Padmalatha KV, Dhandapani G, Kanakachari M, Leelavathi S, Kumar PA, Reddy VS (2013) Glycoproteome of elongating cotton fiber cells. Mol Cell Proteom 12(12):3677–3689. https://doi.org/10.1074/mcp.M113.030726
Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132(24):5387–5398. https://doi.org/10.1242/dev.02139
Lampard GR, Macalister CA, Bergmann DC (2008) Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322(5904):1113–1116. https://doi.org/10.1126/science.1162263
Leitner J, Petrášek J, Tomanov K, Retzer K, Pařezová M, Korbei B, Bachmair A, Zazimalova E, Luschnig C (2012) Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc Natl Acad Sci USA 109(21):8322–8327. https://doi.org/10.1073/pnas.1200824109
Lerouxel O, Mouille G, Andème-Onzighi C, Bruyant MP, Seveno M, Loutelier-Bourhis C, Driouich A, Hofte H, Lerouge P (2005) Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth. Plant J 42(4):455–468. https://doi.org/10.1111/j.1365-313X.2005.02392.x
Li DX, Chen WQ, Xu ZH, Bai SN (2015) HISTONE DEACETYLASE6-defective mutants show increased expression and acetylation of ENHANCER OF TRIPTYCHON AND CAPRICE1 and GLABRA2 with small but significant effects on root epidermis cellular pattern. Plant Physiol 168(4):1448–1458. https://doi.org/10.1104/pp.15.00821
Liu C, Li LC, Chen WQ, Chen X, Xu ZH, Bai SN (2013) HDA18 affects cell fate in Arabidopsis root epidermis via histone acetylation at four kinase genes. Plant Cell 25(1):257–269. https://doi.org/10.1105/tpc.112.107045
Lu KJ, De Rybel B, van Mourik H, Weijers D (2018) Regulation of intercellular TARGET OF MONOPTEROS 7 protein transport in the Arabidopsis root. Development. https://doi.org/10.1242/dev.152892
Lyndon RF (1990) Control of the differentiation of vascular tissues. In: Black M, Chapman J (eds) Plant development. Topics in plant physiology, vol 3. Springer, Dordrecht, pp 135–164
Ma Q, Wu M, Pei W, Li H, Li X, Zhang J, Yu J, Yu S (2014) Quantitative phosphoproteomic profiling of fiber differentiation and initiation in a fiberless mutant of cotton. BMC Genom 15:466. https://doi.org/10.1186/1471-2164-15-466
Maeda M, Kimura Y (2014) Structural features of free N-glycans occurring in plants and functional features of de-N-glycosylation enzymes, ENGase, and PNGase: the presence of unusual plant complex type N-glycans. Front Plant Sci 5:429. https://doi.org/10.3389/fpls.2014.00429
Marcon C, Malik WA, Walley JW, Shen Z, Paschold A, Smith LG, Piepho HP, Briggs SP, Hochholdinger F (2015) A high-resolution tissue-specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes. Plant Physiol 168(1):233–246. https://doi.org/10.1104/pp.15.00138
Matos JL, Lau OS, Hachez C, Cruz-Ramirez A, Scheres B, Bergmann DC (2014) Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. eLife. https://doi.org/10.7554/eLife.03271
Menges M, Samland AK, Planchais S, Murray JA (2006) The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18(4):893–906. https://doi.org/10.1105/tpc.105.039636
Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130(6):1044–1056. https://doi.org/10.1016/j.cell.2007.07.033
Müller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E, Prosperini E, Vigo E, Oliner JD, Helin K (2001) E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15(3):267–285. https://doi.org/10.1101/gad.864201
Nakagami H, Kawamura K, Sugisaka K, Sekine M, Shinmyo A (2002) Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell 14(8):1847–1857. https://doi.org/10.1105/tpc.002550
Nassrallah A, Rougee M, Bourbousse C, Drevensek S, Fonseca S, Iniesto E, Ait-Mohamed O, Deton-Cabanillas AF, Zabulon G, Ahmed I, Stroebel D, Masson V, Lombard B, Eeckhout D, Gevaert K, Loew D, Genovesio A, Breyton C, De Jaeger G, Bowler C, Rubio V, Barneche F (2018) DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis. eLife. https://doi.org/10.7554/eLife.37892
Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185(1):27–41. https://doi.org/10.1111/j.1469-8137.2009.03054.x
Ohtani M, Akiyoshi N, Takenaka Y, Sano R, Demura T (2017) Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation. J Exp Bot 68(1):17–26. https://doi.org/10.1093/jxb/erw473
Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, Hennig L, Groot E, Laux T (2015) Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell 33(5):576–588. https://doi.org/10.1016/j.devcel.2015.04.024
Pinon V, Yao X, Dong A, Shen WH (2017) SDG2-Mediated H3K4me3 is crucial for chromatin condensation and mitotic division during male gametogenesis in Arabidopsis. Plant Physiol 174(2):1205–1215. https://doi.org/10.1104/pp.17.00306
Qi X, Han SK, Dang JH, Garrick JM, Ito M, Hofstetter AK, Torii KU (2017) Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling. eLife. https://doi.org/10.7554/eLife.24102
Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S, Drubert C, Polle A, Lipka V, Teichmann T (2012) Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell 24(9):3823–3837. https://doi.org/10.1105/tpc.112.103374
Rodríguez-Sanz H, Moreno-Romero J, Solís MT, Köhler C, Risueño MC, Testillano PS (2014) Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with BnHKMT and BnHAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenet Genome Res 143(1–3):209–218. https://doi.org/10.1159/000365261
Salanenka Y, Verstraeten I, Löfke C, Tabata K, Naramoto S, Glanc M, Friml J (2018) Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc Natl Acad Sci USA 115(14):3716–3721. https://doi.org/10.1073/pnas.1721760115
Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64(1):11–31. https://doi.org/10.1093/jxb/ers287
Singh PK, Gao W, Liao P, Li Y, Xu F-C, Ma X-N, Long L, Song C-P (2020) Comparative acetylome analysis of wild-type and fuzzless-lintless mutant ovules of upland cotton (Gossypium hirsutum Cv. Xu142) unveils differential protein acetylation may regulate fiber development. Plant Physiol Biochem 150:56–70. https://doi.org/10.1016/j.plaphy.2020.02.031
To JP, Deruere J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19(12):3901–3914. https://doi.org/10.1105/tpc.107.052662
Umeda M, Aki SS, Takahashi N (2019) Gap 2 phase: making the fundamental decision to divide or not. Curr Opin Plant Biol 51:1–6. https://doi.org/10.1016/j.pbi.2019.03.001
Vatén A, Soyars CL, Tarr PT, Nimchuk ZL, Bergmann DC (2018) Modulation of asymmetric division diversity through cytokinin and SPEECHLESS regulatory interactions in the Arabidopsis stomatal lineage. Dev Cell 47(1):53–66. https://doi.org/10.1016/j.devcel.2018.08.007
Veit C, Konig J, Altmann F, Strasser R (2018) Processing of the terminal alpha-1,2-linked mannose residues from oligomannosidic N-glycans is critical for proper root growth. Front Plant Sci 9:1807. https://doi.org/10.3389/fpls.2018.01807
Wang FX, Luo YM, Ye ZQ, Cao X, Liang JN, Wang Q, Wu Y, Wu JH, Wang HY, Zhang M, Cheng HQ, Xia GX (2018a) iTRAQ-based proteomics analysis of autophagy-mediated immune responses against the vascular fungal pathogen Verticillium dahliae in Arabidopsis. Autophagy 14(4):598–618. https://doi.org/10.1080/15548627.2017.1423438
Wang L, Chen H, Wang C, Hu Z, Yan S (2018b) Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair. Proc Natl Acad Sci USA 115(16):E3837–E3845. https://doi.org/10.1073/pnas.1720094115
Wang Y, Peterson S, Loring J (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24(2):143–160
Yang H, Liu X, Xin M, Du J, Hu Z, Peng H, Rossi V, Sun Q, Ni Z, Yao Y (2016a) Genome-wide mapping of targets of maize histone deacetylase HDA101 reveals its function and regulatory mechanism during seed development. Plant Cell 28(3):629–645. https://doi.org/10.1105/tpc.15.00691
Yang H, Yang N, Wang T (2016b) Proteomic analysis reveals the differential histone programs between male germline cells and vegetative cells in Lilium davidii. Plant J 85(5):660–674. https://doi.org/10.1111/tpj.13133
Yoshiyama K, Conklin PA, Huefner ND, Britt AB (2009) Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci USA 106(31):12843–12848. https://doi.org/10.1073/pnas.0810304106
Zhang D, Ye H, Guo H, Johnson A, Zhang M, Lin H, Yin Y (2014) Transcription factor HAT1 is phosphorylated by BIN2 kinase and mediates brassinosteroid repressed gene expression in Arabidopsis. Plant J 77(1):59–70. https://doi.org/10.1111/tpj.12368
Zhang J, Wei B, Yuan R, Wang J, Ding M, Chen Z, Yu H, Qin G (2017) The Arabidopsis ring-type e3 ligase tear1 controls leaf development by targeting the TIE1 transcriptional repressor for degradation. Plant Cell 29(2):243–259. https://doi.org/10.1105/tpc.16.00771
Zhang Y, Guo X, Dong J (2016) Phosphorylation of the polarity protein BASL differentiates asymmetric cell fate through MAPKs and SPCH. Current Biol 26(21):2957–2965. https://doi.org/10.1016/j.cub.2016.08.066
Zhang Y, Jiao Y, Liu Z, Zhu YX (2015) ROW1 maintains quiescent centre identity by confining WOX5 expression to specific cells. Nat Commun 6:6003. https://doi.org/10.1038/ncomms7003
Zhao F, Zheng YF, Zeng T, Sun R, Yang JY, Li Y, Ren DT, Ma H, Xu ZH, Bai SN (2017) Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 Kinase is required for anther development. Plant Physiol 173(4):2265–2277. https://doi.org/10.1104/pp.16.01765
Zhou J, Liu D, Wang P, Ma X, Lin W, Chen S, Mishev K, Lu D, Kumar R, Vanhoutte I, Meng X, He P, Russinova E, Shan L (2018) Regulation of Arabidopsis brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB13-mediated ubiquitination. Proc Natl Acad Sci USA 115(8):E1906–E1915. https://doi.org/10.1073/pnas.1712251115
Zoulias N, Harrison EL, Casson SA, Gray JE (2018) Molecular control of stomatal development. Biochem J 475(2):441–454. https://doi.org/10.1042/BCJ20170413
Zourelidou M, Absmanner B, Weller B, Barbosa IC, Willige BC, Fastner A, Streit V, Port SA, Colcombet J, de la Fuente van Bentem S, Hirt H, Kuster B, Schulze WX, Hammes UZ, Schwechheimer C (2014) Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. eLife. https://doi.org/10.7554/eLife.02860
Acknowledgments
This work was supported by the National Council of Science and Technology (FS-1515 to Víctor M. Loyola-Vargas).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have declared no conflict of interest.
Additional information
Communicated by Manoj Prasad.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aguilar-Hernández, V., Brito-Argáez, L., Galaz-Ávalos, R.M. et al. Post-translational modifications drive plant cell differentiation. Plant Cell Tiss Organ Cult 143, 1–12 (2020). https://doi.org/10.1007/s11240-020-01908-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11240-020-01908-0
Keywords
- Plant
- Differentiation
- Post-translational modification
- Protein activity
- Protein stability