Skip to main content

Untargeted Proteomics and Metabolomics Analysis of Plant Organ Development

  • Protocol
  • First Online:
Plant Gene Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2698))

  • 819 Accesses

Abstract

Our understanding of major developmental transitions in plants and animals has been transformed by the emergence of omics technologies. The majority of leaf growth research has been conducted at the transcriptional level. Although historically understudied, alterations at the protein and metabolite levels have begun to gain traction in recent years. Here, we present a protocol for metabolite and protein extraction followed by untargeted metabolomics and proteomics analysis of the growing leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donnelly PM, Bonetta D, Tsukaya H et al (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419

    Article  CAS  PubMed  Google Scholar 

  2. Skirycz A, Fernie AR (2022) Past accomplishments and future challenges of the multi-omics characterization of leaf growth. Plant Physiol 189(2):473–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96:985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kazama T, Ichihashi Y, Murata S et al (2010) The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of Arabidopsis thaliana. Plant Cell Physiol 51:1046–1054

    Article  CAS  PubMed  Google Scholar 

  5. Kalve S, De Vos D, Beemster GTS (2014) Leaf development: a cellular perspective. Front Plant Sci 5:362

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nath U, Crawford BCW, Carpenter R et al (2003) Genetic control of surface curvature. Science 299:1404–1407

    Article  CAS  PubMed  Google Scholar 

  7. Andriankaja M, Dhondt S, De Bodt S et al (2012) Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell 22:64–78

    Article  CAS  PubMed  Google Scholar 

  8. Efroni I, Blum E, Goldshmidt A et al (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20:2293–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skirycz A, De Bodt S, Obata T et al (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152:226–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Skirycz A, Claeys H, De Bodt S et al (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clauw P, Coppens F, De Beuf K et al (2015) Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol 167:800–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Omidbakhshfard MA, Sokolowska EM, Di Vittori V et al (2021) Multi-omics analysis of early leaf development in Arabidopsis thaliana. Patterns 2:100235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salem MA, Jüppner J, Bajdzienko K et al (2016) Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods 12:45

    Article  PubMed  PubMed Central  Google Scholar 

  14. Giavalisco P, Li Y, Matthes A et al (2011) Elemental formula annotation of polar and lipophilic metabolites using 13C, 15N and 34S isotope labelling, in combination with high-resolution mass spectrometry. Plant J 68:364–376

    Article  CAS  PubMed  Google Scholar 

  15. Alseekh S, Tohge T, Wendenberg R et al (2015) Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell 27:485–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garbowicz K, Liu Z, Alseekh S et al (2018) Quantitative trait loci analysis identifies a prominent gene involved in the production of fatty acid-derived flavor volatiles in tomato. Mol Plant 11:1147–1165

    Article  CAS  PubMed  Google Scholar 

  17. Cox J, Mann M (2008) MaxQuant enable high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  18. Saleh A et al (2021) Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods 18(7):747–756

    Article  Google Scholar 

  19. Mi H et al (2021) PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 49:394–403

    Article  Google Scholar 

  20. Usadel B et al (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Szklarczyk D et al (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:605–612

    Article  Google Scholar 

  22. Kuhn M et al (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36:684–688

    Article  Google Scholar 

  23. Xia J et al (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:652–660

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alisdair R. Fernie or Aleksandra Skirycz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thirumalaikumar, V.P., Fernie, A.R., Skirycz, A. (2023). Untargeted Proteomics and Metabolomics Analysis of Plant Organ Development. In: Kaufmann, K., Vandepoele, K. (eds) Plant Gene Regulatory Networks. Methods in Molecular Biology, vol 2698. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3354-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3354-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3353-3

  • Online ISBN: 978-1-0716-3354-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics