Considerations for large-scale implementation of dormant budwood cryopreservation

Abstract

Cryopreservation of clonal plant germplasm is a reliable way to preserve important agronomic traits and protect against loss of crop genetic diversity of many horticultural species. Dormant bud cryopreservation techniques present an efficient alternative to the labor-intensive shoot tip cryopreservation process and may allow a single technician to preserve large quantities of germplasm in a season. This method of cryopreservation takes advantage of the natural dormancy in cold hardy crops, making it a viable technique for only deciduous trees and shrubs. Many factors must be considered when attempting to perform dormant bud research methods to applied-level germplasm preservation efforts. This process is necessarily a seasonal endeavor, which puts strain on labor and facilities particularly in winter. Integration of methods and procedures using different crop species or new equipment provides additional challenges that must be tested in advance. By identifying variables of dormant bud processing in cryopreservation literature, options emerge that allow for the modification of reported methods to work within the confines of institutional resources. Infrastructure, pre-processing, and recovery stages are discussed in terms of necessity and available alternatives to allow informed decision making in establishing an applied dormant budwood genebank.

Key message

This review aims to provide information about the DB cryopreservation method with a focus on its many variables and permutations reported in literature to allow genebanks and germplasm managers to make informed decisions regarding the designation of critical resources.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

DB:

Dormant bud(s)

H:

Hours

HQC:

8-Hydroxyquinoniline citrate

LN:

Liquid nitrogen

LNV:

Liquid nitrogen vapor

MC:

Moisture content

TTC:

Triphenyltetrazolium chloride

References

  1. Ai P, Luo Z (2005) Cryopreservation of dormant vegetative buds and genetic stability analysis of regenerated plantlets in persimmon. Acta Hortic 685:85–92. https://doi.org/10.17660/ActaHortic.2005.685.8

    Article  Google Scholar 

  2. Aronen T, Ryynänen L (2014) Cryopreservation of dormant in vivo-buds of hybrid aspen: timing as critical factor. Cryoletters 35:385–394

    CAS  PubMed  Google Scholar 

  3. Arora R, Taulavuori K (2016) Increased risk of freeze damage in woody perennials vis-à-vis climate change: importance of deacclimation and dormancy response. Front Environ Sci. https://doi.org/10.3389/fenvs.2016.00044

    Article  Google Scholar 

  4. Atmakuri AR, Chaudhury R, Malik SK et al (2009) Mulberry biodiversity conservation through cryopreservation. Vitro Cell Dev Biol-Plant 45:639. https://doi.org/10.1007/s11627-008-9185-3

    Article  Google Scholar 

  5. Benelli C, De Carlo A, Giordani E, et al (2008) Vitrification/one-step freezing procedure for cryopreservation of persimmon dormant bud. In: IV International symposium on persimmon, vol 833, pp 163–168

  6. Benelli C, De Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol Adv 31:175–185. https://doi.org/10.1016/j.biotechadv.2012.09.004

    CAS  Article  PubMed  Google Scholar 

  7. Biringer B, Vugrin E, Warren D (2013) Critical infrastructure system security and resiliency. CRC Press, Boca Raton

    Google Scholar 

  8. Bonnart R, Waddell J, Haiby K et al (2014) Cryopreservation of Populus trichocarpa and Salix dormant buds with recovery by grafting or direct rooting. CryoLetters 35:507–515

    PubMed  Google Scholar 

  9. Calkins JB, Swanson BT (1990) The distinction between living and dead plant tissue—viability tests in cold hardiness research. Cryobiology 27:194–211. https://doi.org/10.1016/0011-2240(90)90012-S

    Article  Google Scholar 

  10. Choudhary R, Chaudhury R, Malik SK et al (2013) Genetic stability of mulberry germplasm after cryopreservation by two-step freezing technique. Afr J Biotechnol 12:5983–5993. https://doi.org/10.5897/AJB2013.12916

    CAS  Article  Google Scholar 

  11. Choudhary R, Malik SK, Chaudhury R, Sharma KC (2014) Long-term conservation of dormant buds of Prunus dulcis (Miller) DA Webb. using three different new cryotechniques. Romanian Biotechnol Lett 19:9575–9584

    Google Scholar 

  12. Chrusciel L, Mougel E, Zoulalian A, Meunier T (1999) Characterisation of water transfer in a low temperature convective wood drier: influence of the operating parameters on the mass transfer coefficient. Holz Als Roh-Werkst 57:439–445. https://doi.org/10.1007/s001070050070

    Article  Google Scholar 

  13. Contaldo C, Tura ME, Pancaldi M (2018) Nuove tecnologie per la conservazione delle specie da frutto certificate. Riv Fruttic E Ortofloric 82:8–15

    Google Scholar 

  14. Engelmann F (2004) Plant cryopreservation: progress and prospects. Vitro Cell Dev Biol-Plant 40:427–433. https://doi.org/10.1079/IVP2004541

    Article  Google Scholar 

  15. Esensee V, Stushnoff C, Forsline PL (1990) Cryopreservation of dormant grape (Vitis sp.) buds. HortScience 25:1090. https://doi.org/10.21273/HORTSCI.25.9.1090e

    Article  Google Scholar 

  16. Fiorino P, Mancuso S (2000) Differential thermal analysis, supercooling and cell viability in organs of Olea europaea at subzero temperatures. Adv Hortic Sci 14:23–27

    Google Scholar 

  17. Food and Agriculture Organization (2016) Genebank standards for plant genetic resources for food and agriculture. Food and Agriculture Organization, Rome

    Google Scholar 

  18. Forsline PL, Towill LE, Waddell J, Wiesner L (1995) Development of a base collection of malus germplasm with cryopreserved dormant buds. HortScience 30:872B–872

    Google Scholar 

  19. Forsline PL, Lamboy WF, McFerson JR, Stushnoff C (1996a) Desiccation tolerance of dormant grape buds from germplasm accessions in the cold-hardy Vitis core subset collection. HortScience 31:646a

    Google Scholar 

  20. Forsline PL, Luffman M, Warner J, Towill LE (1996b) Cooperative cryopreservation of dormant apple buds from the Canadian Clonal Gene Bank. HortScience 31:646b. https://doi.org/10.21273/HORTSCI.31.4.646b

    Article  Google Scholar 

  21. Forsline PL, McFerson JR, Lamboy WF (1996c) Optimizing bud harvest time and duration of temporary cold storage for cryopreservation of dormant apple buds. HortScience 31:646. https://doi.org/10.21273/HORTSCI.31.4.646c

    Article  Google Scholar 

  22. Forsline PL, McFerson JR, Lamboy WF, Towill LE (1998a) Development of base and active collections of Malus germplasm with cryopreserved dormant buds. Acta Hortic 484:75–78. https://doi.org/10.17660/ActaHortic.1998.484.8

    Article  Google Scholar 

  23. Forsline PL, Towill LE, Waddell JW et al (1998b) Recovery and longevity of cryopreserved dormant apple buds. J Am Soc Hortic Sci 123:365–370

    Google Scholar 

  24. Fukui K, Shirata K, Niino T, Kashif IM (2011) Cryopreservation of mulberry winter buds in Japan. Acta Hortic 908:483–488. https://doi.org/10.17660/ActaHortic.2011.908.62

    Article  Google Scholar 

  25. Gao Z, Li J, Zhu H et al (2014) Using differential thermal analysis to analyze cold hardiness in the roots of grape varieties. Sci Hortic 174:155–163. https://doi.org/10.1016/j.scienta.2014.05.002

    Article  Google Scholar 

  26. Gerard PD, Schucany WR (1997) Locating exotherms in differential thermal analysis with nonparametric regression. J Agric Biol Environ Stat 2:255–268. https://doi.org/10.2307/1400445

    Article  Google Scholar 

  27. Grout BWW, Green J, Toldam-Andersen T (2009) Practical benefits of dormant bud cryopreservation for genetic resource conservation. In: EU COST action 871, royal botanical gardens, pp 389–390

  28. Harvengt L, Meier-Dinkel A, Dumas E, Collin E (2004) Establishment of a cryopreserved gene bank of European elms. Can J For Res 34:43–55. https://doi.org/10.1139/x03-193

    Article  Google Scholar 

  29. Helton AW (1962) Effect of simulated freeze-cracking on invasion of dry-ice-injured stems of Stanley prune trees by naturally disseminated Cytospora inoculum. Plant Rep 46:45–47

    Google Scholar 

  30. Höfer M (2015) Cryopreservation of winter-dormant apple buds: establishment of a duplicate collection of Malus germplasm. Plant Cell Tissue Organ Cult 121:647–656. https://doi.org/10.1007/s11240-015-0735-1

    CAS  Article  Google Scholar 

  31. Jenderek MM, Forsline P, Postman J et al (2011a) Effect of geographical location, year, and cultivar on survival of Malus sp. dormant buds stored in vapors of liquid nitrogen. HortScience 46:1230–1234

    Google Scholar 

  32. Jenderek MM, Postman J, Leslie C et al (2011b) Cryopreservation of Juglans sp. germplasm using winter dormant buds. Cryobiology 63:327–328. https://doi.org/10.1016/j.cryobiol.2011.09.081

    Article  Google Scholar 

  33. Jenderek MM, Reed BM (2017) Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. Vitro Cell Dev Biol-Plant 53:299–308. https://doi.org/10.1007/s11627-017-9828-3

    CAS  Article  Google Scholar 

  34. Jenderek MM, Tanner JD, Ambruzs BD et al (2017) Twig pre-harvest temperature significantly influences effective cryopreservation of Vaccinium dormant buds. Cryobiology 74:154–159. https://doi.org/10.1016/j.cryobiol.2016.10.007

    Article  PubMed  Google Scholar 

  35. Jenderek MM, Tanner JD, Chao CT, Blackburn H (2019) How applicable are dormant buds in cryopreservation of horticultural woody plant crops? The Malus case. Acta Hortic 1234:317–322. https://doi.org/10.17660/ActaHortic.2019.1234.41

    Article  Google Scholar 

  36. Jung D (2012) Flash forward to today’s environmental test chambers. Quality 51:38–43

    Google Scholar 

  37. Ketchie DO, Kammereck R (1987) Seasonal variation of cold resistance in Malus woody tissue as determined by differential thermal analysis and viability tests. Can J Bot 65:2640–2645. https://doi.org/10.1139/b87-355

    Article  Google Scholar 

  38. Kim H-H, Yoon J-W, Park Y-E et al (2006) Cryopreservation of potato cultivated varieties and wild species: critical factors in droplet vitrification. CryoLetters 27:223–234

    CAS  PubMed  Google Scholar 

  39. Kovalchuk I, Turdiev T, Mukhitdinova Z et al (2014) New techniques for rapid cryopreservation of dormant vegetative buds. Acta Hortic 1039:137–146. https://doi.org/10.17660/ActaHortic.2014.1039.17

    Article  Google Scholar 

  40. Lambardi M, Benelli C, De Carlo A, Previati A (2008) Advances in the cryopreservation of fruit plant germplasm at the CNR-IVALSA Institute of Florence. In: I International symposium on biotechnology of fruit species: BIOTECHFRUIT2008. pp 237–243

  41. Lambardi M, Benelli C, De Carlo A, et al (2011) Cryopreservation of ancient apple cultivars of Veneto: a comparison between PVS2-vitrification and dormant-bud techniques. In: I International symposium on cryopreservation in horticultural species, vol 908, pp 191–198

  42. Ling K-S (2017) Chapter 41—decontamination measures to prevent mechanical transmission of viroids. In: Hadidi A, Flores R, Randles JW, Palukaitis P (eds) Viroids and satellites. Academic Press, Boston, pp 437–445

    Google Scholar 

  43. Matsumoto T, Niino T, Shirata K et al (2004) Long-term conservation of Diospyros germplasm using dormant buds by a prefreezing method. Plant Biotechnol 21:229–232. https://doi.org/10.5511/plantbiotechnology.21.229

    Article  Google Scholar 

  44. Matsumoto T, Yamamoto S, Fukui K et al (2015) Cryopreservation of persimmon shoot tips from dormant buds using the D cryo-plate technique. Hortic J MI–043

  45. Mills LJ, Ferguson JC, Keller M (2006) Cold-hardiness evaluation of grapevine buds and cane tissues. Am J Enol Vitic 57:194–200

    Google Scholar 

  46. Montano J, Rebhuhn M, Hummer K, Lagerstedt H (1987) Differential thermal-analysis for large-scale evaluation of pear cold hardiness. HortScience 22:1335–1336

    Google Scholar 

  47. Morrissey TM, Gustafson WA (1990) The use of dormant-bud cryopreservation for long-term storage of pecan and walnut germplasm. HortScience 25:1142–1142. https://doi.org/10.21273/HORTSCI.25.9.1142c

    Article  Google Scholar 

  48. Niino T (1995) Cryopreservation of germplasm of mulberry (Morus Species). In: Bajaj YPS (ed) Cryopreservation of plant germplasm I. Springer, Berlin, pp 102–113

    Google Scholar 

  49. Oka S, Yakuwa H, Sate K, Niino T (1991) Survival and shoot formation in vitro of pear winter buds cryopreserved in liquid nitrogen. HortScience 26:65–66. https://doi.org/10.21273/HORTSCI.26.1.65

    Article  Google Scholar 

  50. Panis B (2019) Sixty years of plant cryopreservation: from freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic 1234:1–8. https://doi.org/10.17660/ActaHortic.2019.1234.1

    Article  Google Scholar 

  51. Pathirana R, Molloy C, Erridge Z et al (2018) Towards a cryopreserved germplasm collection of apple—results of dormant bud cryopreservation in the mild maritime winter climate of Hawkes Bay, New Zealand. Acta Hortic 1205:769–778. https://doi.org/10.17660/ActaHortic.2018.1205.96

    Article  Google Scholar 

  52. Pool R, Reisch B, Welser M (1990) Use of differential thermal analysis to quantify bud cold hardiness of grape selections and clones. Vitis 29:318–329

    Google Scholar 

  53. Quamme H (1991) Application of thermal analysis to breeding fruit crops for increased cold hardiness. HortScience 26:513–517

    Google Scholar 

  54. Rantala S, Kaseva J, Karhu S et al (2019) Cryopreservation of Ribes nigrum (L.) dormant buds: recovery via in vitro culture to the field. Plant Cell Tissue Organ Cult 138:109–119. https://doi.org/10.1007/s11240-019-01607-5

    Article  Google Scholar 

  55. Reed BM (2001) Implementing cryogenic storage of clonally propagated plants. CryoLetters 22:97–104

    CAS  PubMed  Google Scholar 

  56. Reed BM (2002) Implementing cryopreservation for long-term germplasm preservation in vegetatively propagated species. In: Towill LE, Bajaj YPS (eds) Cryopreservation of plant germplasm II. Springer, Berlin, pp 22–33

    Google Scholar 

  57. Reed BM (2004) Technical guidelines for the management of field and in vitro germplasm collections. Bioversity International

  58. Reed BM (2008) Cryopreservation—practical considerations. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 3–13

    Google Scholar 

  59. Reed BM, Denoma J, Luo J et al (1998) Cryopreservation and long-term storage of pear germplasm. Vitro Cell Dev Biol-Plant 34:256. https://doi.org/10.1007/BF02822718

    Article  Google Scholar 

  60. Ryynänen L (1996) Survival and regeneration of dormant silver birch buds stored at super-low temperatures. Can J For Res 26:617–623

    Google Scholar 

  61. Sakai A (1960) Survival of the twig of woody plants at −196° C. Nature 185:393–394. https://doi.org/10.1038/185393a0

    Article  Google Scholar 

  62. Sakai A (1966) Studies of frost hardiness in woody plants. II. effect of temperature on hardening. Plant Physiol 41:353–359

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sakai A, Nishiyama Y (1978) Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen [Apple]. HortScience

  64. Sakai A, Yoshida S (1967) Survival of plant tissue at super-low temperature VI. effects of cooling and rewarming rates on survival. Plant Physiol 42:1695–1701. https://doi.org/10.1104/pp.42.12.1695

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Seo MJ, Shin JH, Sohn JK (2007) Cryopreservation of dormant herbaceous peony (Paeonia lactiflora Pall.) shoot-tips by desiccation. Cryoletters 28:207–213

    CAS  PubMed  Google Scholar 

  66. Seufferheld MJ, Stushnoff C, Fitzpatrick J, Forsline PL (1992) Cryopreservation of dormant buds from cold-tender taxa using a modified vitrification procedure. HortScience 27:1262–1262. https://doi.org/10.21273/HORTSCI.27.12.1262a

    Article  Google Scholar 

  67. Seufferheld MJ, Stushnoff C, Forsline PL, Gonzalez GHT (1999) Cryopreservation of cold-tender apple germplasm. J Am Soc Hortic Sci 124:612–618

    CAS  Google Scholar 

  68. Stushnoff C (1987) Cryopreservation of apple genetic resources. Can J Plant Sci 67:1151–1154

    Google Scholar 

  69. Stushnoff C (1991) Cryopreservation of fruit crop genetic resources—implications for maintenance and diversity during conservation. HortScience 26:518–522. https://doi.org/10.21273/HORTSCI.26.5.518

    Article  Google Scholar 

  70. Stushnoff C, Junttila O (1986) Seasonal development of cold stress resistance in several plant species at a coastal and a continental location in North Norway. Polar Biol 5:129–133. https://doi.org/10.1007/BF00441691

    Article  Google Scholar 

  71. Stushnoff C, Seufferheld M (1995) Cryopreservation of apple (Malus species) genetic resources. In: Bajaj YPS (ed) Cryopreservation of plant germplasm I. Springer, Berlin, pp 87–101

    Google Scholar 

  72. Tanner JD, Minas IS, Chen KY et al (2020) Antimicrobial forcing solution improves recovery of cryopreserved temperate fruit tree dormant buds. Cryobiology 92:241–247. https://doi.org/10.1016/j.cryobiol.2020.01.019

    CAS  Article  PubMed  Google Scholar 

  73. Toldam-Andersen TB, Nygaard TB, Krogholm KS (2007) Cryopreservation of dormant buds of apple cultivars in a mild maritime winter climate. Adv Hortic Sci 21:193–197

    Google Scholar 

  74. Towill LE, Bonnart R (2005) Cryopreservation of apple using non-desiccated sections from winter-collected scions. CryoLetters 26:323–332

    PubMed  Google Scholar 

  75. Towill LE, Ellis DD (2008) Cryopreservation of dormant buds. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 421–442

    Google Scholar 

  76. Towill LE, Forsline PL (1996) Cryopreservation of dormant vegetative buds from sour cherry. HortScience 31:645–645. https://doi.org/10.21273/HORTSCI.31.4.645f

    Article  Google Scholar 

  77. Towill LE, Forsline PL (1999) Cryopreservation of sour cherry (Prunus cerasus L.) using a dormant vegetative bud method. CryoLetters 20:215–222

    Google Scholar 

  78. Towill LE, Widrlechner M (2004) Cryopreservation of Salix species using sections from winter vegetative scions. CryoLetters 25:71–80

    PubMed  Google Scholar 

  79. Towill LE, Forsline PL, Walters C et al (2004) Cryopreservation of Malus germplasm using a winter vegetative bud method: Results from 1915 accessions. CryoLetters 25:323–334

    PubMed  Google Scholar 

  80. Tyler N, Stushnoff C (1988a) Dehydration of dormant apple buds at different stages of cold acclimation to induce cryopreservability in different cultivars. Can J Plant Sci 68:1169–1176. https://doi.org/10.4141/cjps88-145

    Article  Google Scholar 

  81. Tyler NJ, Stushnoff C (1988b) The effects of prefreezing and controlled dehydration on cryopreservation of dormant vegetative apple buds. Can J Plant Sci 68:1163–1167. https://doi.org/10.4141/cjps88-144

    Article  Google Scholar 

  82. Tyler N, Stushnoff C, Gusta LV (1988) Freezing of water in dormant vegetative apple buds in relation to cryopreservation. Plant Physiol 87:201–205. https://doi.org/10.1104/pp.87.1.201

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Vertucci CW, Stushnoff C (1992) The state of water in acclimating vegetative buds from Malus and Amelanchier and its relationship to winter hardiness. Physiol Plant 86:503–511. https://doi.org/10.1111/j.1399-3054.1992.tb02162.x

    Article  Google Scholar 

  84. Vogiatzi C, Grout BWW, Toldam-Andersen TB, Wulfsohn D (2010) Dormant bud cryopreservation: secondary buds can affect the estimation of post-thaw survival. In: XXVIII international horticultural congress on science and horticulture for people (IHC2010): III International Symposium on 918, pp 147–151

  85. Vogiatzi C, Grout BWW, Toldam-Andersen TB, Green J (2011a) Cryopreservation of dormant buds from temperate fruit crops to optimise working collection resources. Acta Hortic. https://doi.org/10.17660/ActaHortic.2011.908.61

    Article  Google Scholar 

  86. Vogiatzi C, Grout BWW, Wetten A, Toldam-Andersen BT (2011b) Cryopreservation of winter-dormant apple buds: II—tissue water status after desiccation at -4°C and before further cooling. CryoLetters 32:367–376

    CAS  PubMed  Google Scholar 

  87. Vogiatzi C, Grout BWW, Wetten A, Toldam-Andersen TB (2011c) Cryopreservation of winter-dormant apple buds: I—variation in recovery with cultivar and winter conditions. CryoLetters 32:358–366

    CAS  PubMed  Google Scholar 

  88. Vogiatzi C, Grout BWW, Wetten A (2012) Cryopreservation of winter-dormant apple: III—bud water status and survival after cooling to -30°C and during recovery from cryopreservation. CryoLetters 33:160–168

    Google Scholar 

  89. Volk GM, Waddell J, Bonnart R et al (2008) High viability of dormant Malus buds after 10 years of storage in liquid nitrogen vapour. CryoLetters 29:89–94

    CAS  PubMed  Google Scholar 

  90. Volk GM, Bonnart R, Waddell J, Widrlechner MP (2009) Cryopreservation of dormant buds from diverse Fraxinus species. CryoLetters 30:262–267

    CAS  PubMed  Google Scholar 

  91. Volk GM, Bonnart R, Shepherd A et al (2015) Cryopreservation of citrus for long-term conservation. Acta Hortic 1065:187–192

    Google Scholar 

  92. Volk GM, Henk AD, Jenderek MM, Richards CM (2017) Probabilistic viability calculations for cryopreserving vegetatively propagated collections in genebanks. Genet Resour Crop Evol 64:1613–1622. https://doi.org/10.1007/s10722-016-0460-6

    CAS  Article  Google Scholar 

  93. Waterman KC, Adami RC (2005) Accelerated aging: prediction of chemical stability of pharmaceuticals. Int J Pharm 293:101–125. https://doi.org/10.1016/j.ijpharm.2004.12.013

    CAS  Article  PubMed  Google Scholar 

  94. Wu Y, Zhao Y, Engelmann F et al (2001) Cryopreservation of apple dormant buds and shoot tips. Cryo Letters 22:375–380

    CAS  PubMed  Google Scholar 

  95. Yakuwa H, Oka S (1988) Plant regeneration through meristem culture from vegetative buds of mulberry (Morus bombycis koidz.) stored in liquid nitrogen. Ann Bot 62:79–82. https://doi.org/10.1093/oxfordjournals.aob.a087638

    Article  Google Scholar 

  96. Yanisko P, Croll D (2012) Use nitrogen safely. Chem Eng Prog 108:44–48

    CAS  Google Scholar 

  97. Yi J, Lee G, Chung J et al (2015) Morphological and genetic stability of dormant apple winter buds after cryopreservation. Korean J Plant Resour 28:697–703

    Google Scholar 

  98. Zhumagulova ZB, Kovalchuk IY, Reed BM et al (2014) Effect of pretreatment methods of dormant pear buds on viability after cryopreservation. World Appl Sci J 30:330–334

    Google Scholar 

Download references

Acknowledgements

This research was supported by Non-Assistance Cooperative Agreement no. 58-3012-5-010 titled, “Increasing Efficiency in Cryopreservation of Clonally Maintained High Priority Germplasm Collections Using Dormant Winter Bud Technology,” between the United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Colorado State University Department of Horticulture and Landscape Architecture (CSU HLA). Funding was also provided in part by the National Academy of Sciences (NAS) and USAID, and any opinions, findings, conclusions, or recommendations expressed in such are those of the authors alone, and do not necessarily reflect the views of USAID or NAS. USDA-ARS and CSU are equal opportunity employers.

Author information

Affiliations

Authors

Contributions

GV, JT, KC, RB and ISM conceived the concept of the manuscript. JT wrote the first draft of the manuscript and KC substantially improved it and created graphic artwork. All authors have reviewed, edited and approved the final manuscript.

Corresponding authors

Correspondence to Justin D. Tanner or Gayle M. Volk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Ranjith Pathirana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanner, J.D., Chen, K.Y., Bonnart, R.M. et al. Considerations for large-scale implementation of dormant budwood cryopreservation. Plant Cell Tiss Organ Cult (2020). https://doi.org/10.1007/s11240-020-01884-5

Download citation

Keywords

  • Dormant budwood
  • Clonal genebanking
  • Applied cryopreservation
  • Tree fruit germplasm
  • Liquid nitrogen storage