Skip to main content
Log in

Cloning and functional identification of a strigolactone receptor gene MdD14 in apple

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Strigolactones (SLs) are phytohomones that regulate shoot branching and hypocotyl elongation. Here, the strigolactone receptor gene MdD14 in apple was cloned. MdD14 was localized to the nucleus and cytoplasm. GUS staining showed that MdD14 was expressed in various tissues. A promoter analysis revealed that MdD14 contained multiple response elements and its expression levels were induced by various abiotic stress treatment. The post-translational of MdD14 was regulated by the SL analog GR24. Ectopic expression of MdD14 in Arabidopsis is resulted in a phenotype that inhibited shoot branching and hypocotyl elongation, as well as increased tolerance to salt, drought and low temperature stresses. These findings reveal the functions of MdD14 and lay a foundation for studying SLs in apple.

Key message

The apple MdD14 plays a key role in the SL signal transduction pathway and is involved in various abiotic stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  • An JP, Li HH, Song LQ, Su L, Liu X, You CX, Hao YJ (2016) The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiol Biol 108:24–31

    CAS  Google Scholar 

  • An JP, Qu FJ, Yao JF, Wang XN, You CX, Wang XF, Hao YJ (2017) The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic Res 4:17023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An JP, Yao JF, Xu RR, You CX, Wang XF, Hao YJ (2018) Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation. Plant Cell Environ 41:2678–2692

    Article  CAS  PubMed  Google Scholar 

  • Beveridge CA, Kyozuka J (2010) New genes in the strigolac-Tone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39

    Article  CAS  PubMed  Google Scholar 

  • Beveridge CA, Ross JJ, Murfet IC (1996) Branching in pea (action of genes Rms3 and Rms4). Plant Physiol 110:859–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun N, De Saint G, Pillot JP et al (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238

    Article  CAS  PubMed  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ et al (2009) Strigolactone acts down stream of auxin to regulate bud out growth in Pea and Arabidopsis. Plant Physiol 150:482–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu Q, Lv T, Shen H et al (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164:424–439

    Article  CAS  PubMed  Google Scholar 

  • Chevalier F, Nieminen K, Sanchez-ferrero JC et al (2014) Strigolactone promotes degradation of DWARF14, an alpha/beta hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26:1134–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME (1966) Germination of witchweed (Striga lutea Lour.) isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Decker EL, Alder A, Hunn S et al (2017) Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytol 216:455–468

    Article  CAS  PubMed  Google Scholar 

  • Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234:419–427

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, Brewer PB, Beveridge CA (2009) Striglactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Chen XY (2017) Branching out. Sci China Life Sci 60:108–110

    Article  PubMed  Google Scholar 

  • Ha CV, Leyva-Gonzalez MA, Osakabe Y et al (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111:851–856

    Article  PubMed  CAS  Google Scholar 

  • Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ (2016) Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genet 12:e1006273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu QL, He YJ, Wang L (2017) DWARF14, A receptor covalently linked with the active form of Strigolactones, undergoes Strigolactone-dependent degradation in Rice. Front Plant Sci 10:3389–3400

    Google Scholar 

  • Jiang L, Liu X, Xiong G et al (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson X, Brcich T, Dun EA et al (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are co-regulated by other long-distance signals. Plant Physiol 142:1014–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapulnik Y, Delaux PM, Resnick N et al (2011) Strigolactones affect lateral root formation and root- hair elongation in Arabidopsis. Planta 233(1):209–216

    Article  CAS  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, RuyterSpira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chen L, Li Y, Yao R, Wang F, Yang M, Gu M, Nan F, Xie D, Yan J (2016) Effect of GR24 stereoisomers on plant development in Arabidopsis. Mol Plant 9:1432–1435

    Article  CAS  PubMed  Google Scholar 

  • Liu XJ, An XH, Liu X, Hu DG, Wang XF, You CX, Hao YJ (2017a) MdSnRK1.1 interacts with MdJAZ18 to regulate sucroseinduced anthocyanin and proanthocyanidin accumulation in apple. J Exp Bot 11:2977–2990

    Article  CAS  Google Scholar 

  • Liu XJ, Liu X, An XH, Han PL, You CX, Hao YJ (2017b) An apple protein kinase MdSnRK1.1 interacts with MdCAIP1 to regulate ABA sensitivity. Plant Cell Physiol 58:1631–1641

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Liu X, Ma QJ, Kang H, Liu YJ, Hao YJ, You CX (2018) Molecular cloning and functional characterization of the Aluminumactivated malate transporter gene MdALMT14. Sci Hortic Amst 244:208–217

    Article  CAS  Google Scholar 

  • Ma QJ, Sun MH, Lu J, Liu YJ, Hu DG, You CX, Hao YJ (2017) Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiol 174:2348–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB, Beveridge CA, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren YR, Yang YY, Zhang R, You CX, Zhao Q, Hao YJ (2019) MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. Plant Sci. 288:168–180

    Article  CAS  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in: another belowground role for strigolactones. Plant Physiol 155(2):721–734

    Article  CAS  PubMed  Google Scholar 

  • Snowden KC, Janssen BJ (2016). Nature. 536:402–404

    Article  CAS  PubMed  Google Scholar 

  • Snowden KC, Simkin AJ, Janssen BJ et al (2005) The decreased apical dominance1/petunia hybrid CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17(3):746–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Lu Z, Yu H et al (2017) IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res 27:1128–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda H, Kusaba M (2015) Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol 169:138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27:3128–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters MT, Smith SM (2013) KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Mol Plant 6:63–75

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW et al (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322

    Article  CAS  PubMed  Google Scholar 

  • Xie DX, Yao RF, Wang L (2018) Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. J Exp Bot 10:1093–1107

    Google Scholar 

  • Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–408

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Ming Z, Yan L et al (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536:469–473

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Li J, Xie D (2017) Recent advances in molecular basis for strigolactone action. Sci China Life Sci 10:1007–1142

    Google Scholar 

  • Zhou F, Lin Q, Zhu L et al (2013) D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (31430074), Major Program of Shandong Provincial Natural Science Foundation (ZR2017ZC0328), Shandong Province Government (SDAIT-06-03), and Ministry of Agriculture of China (CARS-27).

Author information

Authors and Affiliations

Authors

Contributions

Yu-Jin Hao, Xiao-Fei Wang, and Yu-Ying Yang conceived and designed the experiments; Xiao-Fei Wang and Yu-Jin Hao supervised the experiments; Yi-Ran Ren and Peng-Fei Zheng performed most of the experiments; Yu-Jin Hao and Yu-Ying Yang conceived the project and wrote the article with contributions from all the authors.

Corresponding authors

Correspondence to Xiao-Fei Wang or Yu-Jin Hao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Henryk Flachowsky.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Acquisition of transgenic plants. (A) GUS staining of ProMdD14::GUS transgenic Arabidopsis. (B) GUS staining of ProMdD14::GUS transgenic calli. (C) The expression of MdD14 by RT-qPCR in MdD14-OE transgenic calli and MdD14-anti transgenic calli. (D) Electrophoresis of PCR products for cloning of MdD14-OE transgenic Arabidopsis. (E) The expression of MdD14 by RT-qPCR in MdD14-OE transgenic Arabidopsis. Supplementary material 1 (PNG 1315 kb)

Figure S2

Response of MdD14 transgenic calli to salt, drought and low temperature. (A) The phenotype of MdD14-OE transgenic calli treated with NaCl and PEG. The fresh height (B), MDA (C), and relative electrical conductivity (D) of Figure S2A. (E) The phenotype of MdD14-OE transgenic calli treated with different temperture. The fresh height (F), MDA (G), and relative electrical conductivity (H) of Figure S2E. Supplementary material 2 (JPEG 3231 kb)

Table S1

GenBank accession numbers of D14 orthologs used in Fig. 1. Supplementary material 3 (PNG 2203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YY., Ren, YR., Zheng, PF. et al. Cloning and functional identification of a strigolactone receptor gene MdD14 in apple. Plant Cell Tiss Organ Cult 140, 197–208 (2020). https://doi.org/10.1007/s11240-019-01722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01722-3

Keywords

Navigation