Skip to main content
Log in

Application of transport engineering to promote catharanthine production in Catharanthus roseus hairy roots

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Low accumulation levels of valuable plant secondary metabolites lead to high costs for these compounds production. In order to promote accumulation levels of these molecules, many efforts have been carried out during the past decades, such as elicitation, precursor feeding, tissue cultures and overexpression of pathway genes. However, these engineering strategies could only slightly increase the amounts of target metabolites, since biosynthesis pathways of these compounds are very complex and involving several different organelles and cell types. In this work, we used Catharanthus roseus hairy roots as research material to investigate the effect of transport engineering on monoterpenoid indole alkaloids (MIAs) production. Results showed that overexpresssion of catharanthine transporter, CrTPT2, in C. roseus hairy roots could dramatically increase the accumulation level of catharanthine to fivefold higher than that in control hairy roots, while other MIAs accumulation levels are not affected. Since the expression of pathway genes are at similar level, timely removal of catharanthine from where it is synthesized could be critical for promoting catharanthine production, which exemplifies the application of transport engineering to effective manipulation of plant secondary metabolites biosynthesis.

Key message

Overexpression of catharanthine transporter, CrTPT2, in Catharanthus roseus hairy roots specifically promotes catharanthine production, which exemplifies an effective manipulation strategy for plant secondary metabolites biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhadra R, Vani S, Shanks J (1993) Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol Bioeng 41:581–592

    CAS  PubMed  Google Scholar 

  • Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626–2635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosselut N, Ghelder CV, Claverie M, Voisin R, Onesto JP, Rosso MN, Esmenjaud D (2011) Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants. Plant Cell Rep 30:1313–1326

    CAS  PubMed  Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477

    CAS  PubMed  Google Scholar 

  • Cao W, Wang Y, Shi M, Hao X, Zhao W, Wang Y, Ren J, Kai G (2018) Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza. Front Plant Sci 9:554

    PubMed  PubMed Central  Google Scholar 

  • Caputi L, Franke J, Farrow SC, Chung K, Payne RME, Nguyen TD, Dang TT, Carqueijeiro TC, Koudounas K, de Bernonville TD, Ameyaw B, Jones DM, Vieira IJC, Courdavault V, O’Connor SE (2018) Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 360:1235–1239

    CAS  PubMed  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Diane Chermak, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    CAS  PubMed  Google Scholar 

  • De Luca V, Salim V, Thamm A, Masada SA, Yu F (2014) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Biol 19:35–42

    PubMed  Google Scholar 

  • Deng C, Hao X, Shi M, Fu R, Wang Y, Zhang Y, Zhou W, Feng Y, Makunga NP, Kai G (2019) Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci 284:1–8

    CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    CAS  PubMed  Google Scholar 

  • Gandhi SG (2019) Synthetic biology for production of commercially important natural product small molecules. In: Singh SP, Pandey A, Du G, Kumar S (eds) Current developments in biotechnology and bioengineering. Elsevier, Boston, pp 189–205

    Google Scholar 

  • Goossens A, Häkkinen ST, Laakso I, Oksman-Caldentey KM, Inzé D (2003) Secretion of secondary metabolites by ATP-binding cassette transporters in plant cell suspension cultures. Plant Physiol 131:1161–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao X, Shi M, Cui L, Xu C, Zhang Y, Kai G (2015) Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots. Biotechnol Appl Biochem 62:24–31

    CAS  PubMed  Google Scholar 

  • Huang Q, Sun M, Yuan T, Wang Y, Shi M, Lu S, Tang B, Pan J, Wang Y, Kai G (2019) The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem 274:368–375

    CAS  PubMed  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276

    CAS  PubMed  Google Scholar 

  • Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan PE, Zafar N, Frukh A (2018) Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Org 132:239–265

    CAS  Google Scholar 

  • Larsen B, Fuller VL, Pollier J, Van Moerkercke A, Schweizer F, Payne R, Colinas M, O’Connor SE, Goossens A, Halkier BA (2017) Identification of iridoid glucoside transporters in Catharanthus roseus. Plant Cell Physiol 58:1507–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv H, Li J, Wu Y, Garyali S, Wang Y (2016) Transporter and its engineering for secondary metabolites. Appl Microbiol Biotechnol 100:6119–6130

    CAS  PubMed  Google Scholar 

  • Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931

    CAS  PubMed  Google Scholar 

  • Nour-Eldin HH, Halkier BA (2013) The emerging field of transport engineering of plant specialized metabolites. Curr Opin Biotechnol 24:263–270

    CAS  PubMed  Google Scholar 

  • Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin YW, Lee EK, Loake GJ (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49:149–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    CAS  PubMed  Google Scholar 

  • Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250

    CAS  Google Scholar 

  • Payne RM, Xu D, Foureau E, Teto Carqueijeiro MI, Oudin A, Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC, Pendle A, Halkier BA, Geu-Flores F, Courdavault V, Nour-Eldin HH, O’Connor SE (2017) An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 3:16208

    PubMed  PubMed Central  Google Scholar 

  • Peebles CAM, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The expressionof1-deoxy-D-xylulosesynthaseandgeraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240

    CAS  PubMed  Google Scholar 

  • Qu Y, Easson ML, Froese J, Simionescu R, Hudlicky T, De Luca V (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci USA 112:6224–6229

    CAS  PubMed  Google Scholar 

  • Qu Y, Easson ME, Simionescu R, Hajicek J, Thamm AMK, Salim V, De Luca V (2018) Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc Natl Acad Sci USA 115:3180–3185

    CAS  PubMed  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    CAS  PubMed  Google Scholar 

  • Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R (2018) Metabolic alteration of Catharanthus roseus cell suspension cultures overexpressing geraniol synthase in the plastids or cytosol. Plant Cell Tiss Org 134:41–53

    CAS  Google Scholar 

  • Samanani N, Park S-U, Facchini PJ (2005) Cell type–specific localization of transcripts encoding nine consecutive enzymes involved in protoberberine alkaloid biosynthesis. Plant Cell 17:915–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Zhang L, Liao Z, Wang S, Yan T, Shi P, Liu M, Fu X, Pan Q, Wang Y, Lv Z, Lu X, Zhang F, Jiang W, Ma Y, Chen M, Hao X, Li L, Tang Y, Lv G, Zhou Y, Sun X, Brodelius PE, Rose JKC, Tang K (2018) The genome of artemisia annua provides insight into the evolution of asteraceae family and artemisinin biosynthesis. Mol Plant 11:776–788

    CAS  PubMed  Google Scholar 

  • Shi M, Huang F, Deng C, Wang Y, Kai G (2019) Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza. Crit Rev Food Sci 59:953–964

    CAS  Google Scholar 

  • Stavrinides A, Tatsis EC, Foureau E, Caputi L, Kellner F, Courdavault V, O’Connor SE (2015) Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol 22:336–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Peebles CAM (2015) Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma 253:1255–1264

    PubMed  Google Scholar 

  • Sun J, Zhao L, Shao Z, Shanks J, Peebles CAM (2018a) Expression of tabersonine 16-hydroxylase and 16-hydroxytabersonine-O-methyltransferase in Catharanthus roseus hairy roots. Biotechnol Bioeng 115:673–683

    CAS  PubMed  Google Scholar 

  • Sun M, Shi M, Wang Y, Huang Q, Yuan T, Wang Q, Wang C, Zhou W, Kai G (2018b) The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. J Exp Bot 70:243–254

    Google Scholar 

  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    PubMed Central  Google Scholar 

  • Yu F, De Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci USA 110:15830–15835

    CAS  PubMed  Google Scholar 

  • Yu F, De Luca V (2014) Transport of monoterpenoid indole alkaloids in Catharanthus roseus. In: Geisler M (ed) Plant ABC Transporters. Springer, Cham, pp 63–75

    Google Scholar 

  • Zhou ML, Zhu XM, Shao JR, Tang YX, Wu YM (2011) Production and metabolic engineering of bioactive substrates in plant hairy root culture. Appl Microbiol Biotechnol 90:1229–1239

    CAS  PubMed  Google Scholar 

  • Zhou W, Huang F, Li S, Wang Y, Zhou C, Shi M, Wang J, Chen Y, Wang Y, Wang H, Kai G (2016) Molecular cloning and characterization of two 1-deoxy-d-xylulose-5-phosphate synthase genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Mol Breed 36:124

    Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (Grant No. 31570303).

Author information

Authors and Affiliations

Authors

Contributions

WY, JS, and YF designed research; WY and YB performed research; WY, YB, ZM, JS, and YF analyzed data; and WY and YF wrote the paper.

Corresponding author

Correspondence to Fang Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by K X Tang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, B., Zhang, M. et al. Application of transport engineering to promote catharanthine production in Catharanthus roseus hairy roots. Plant Cell Tiss Organ Cult 139, 523–530 (2019). https://doi.org/10.1007/s11240-019-01696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01696-2

Keywords

Navigation