Skip to main content
Log in

Transcriptional profiling of the AFL subfamily of B3-type transcription factors during the in vitro induction of somatic embryogenesis in the model legume Medicago truncatula

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In many legume species, somatic embryogenesis is a limiting step of in vitro regeneration, with profound implications to genetic engineering and plant breeding. In Arabidopsis thaliana, the small AFL subfamily of B3-type transcriptional factors is composed by LEC2 (LEAFY COTYLEDON 2), FUSCA (FUSCA3), and ABI3 (ABSCISIC ACID INSENSITIVE 3), which are directly involved in both zygotic and somatic embryogenesis. This study aimed to identify and analyze the expression profile of AFL subfamily genes during in vitro induction of the somatic embryogenesis in the model legume Medicago using near-isogenic genotypes contrasting for their capability of regenerating in vitro. Three AFL genes were identified in the Medicago truncatula genome: MtLEC2, MtFUSCA3 and MtABI3. RT-qPCR was used to compare the expression of these genes during the induction of somatic embryogenesis in the embryogenic genotype M9-10a and the non-embryogenic genotype M9. The AFL genes identified were highly expressed 10 days after introducing leaflet explants in vitro in the embryogenic genotype (M9-10a), whereas absence or low expression was observed in explants of the non-embryogenic genotype (M9). During zygotic embryogenesis, the Medicago Gene Atlas revealed that expression of MtFUSCA3 and MtABI3 occurred specifically during seed development, starting at 10 days after pollination. This study allowed for the identification and transcriptional characterization of MtLEC2, MtFUSCA3, and MtABI3. The expression pattern of these genes in the M9-10a genotype suggests they are involved in the Medicago truncatula somatic embryogenesis. The transcriptional profile of AFL transcription factors highlights the evolutionary conservation of this developmental pathway between the Arabidopsis and Medicago lineages and opens avenues to improve the efficiency of in vitro embryogenesis in legume crops.

Key message

Expression of MtLEC2, MtFUSCA3, and MtABI3 genes was induced during somatic embryogenesis and these genes to be used as in vitro regeneration biomarkers as well as to improving somatic embryogenic rates in legumes and other crops recalcitrant to in vitro regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida AM, Parreira JR, Santos R, Duque AS, Francisco R, Tomé DF, Ricardo CP, Coelho AV, Fevereiro P (2012) A proteomics study of the induction of somatic embryogenesis in Medicago truncatula using 2DE and MALDI-TOF/TOF. Physiol Plant 146:236–249

    Article  CAS  PubMed  Google Scholar 

  • Araújo SS, Duque ASRLA, Santos DMMF, Fevereiro MPS (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tiss Org Cult 78:123–131

    Article  Google Scholar 

  • Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75

    Article  CAS  PubMed  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3468–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonero P, Iglesias-Fernández R, Jesús Vicente-Carbajosa J (2017) The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds. J Exp Bot 68:871–880

    CAS  PubMed  Google Scholar 

  • Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G (2004) AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol 136:3660–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duque AS, Pires AS, Santos DM, Fevereiro P (2006) Efficient somatic embryogenesis and plant regeneration from long-term cell suspension cultures of Medicago truncatula cv. Jemalong. In Vitro Cell Dev Biol 42:270–273

    Article  CAS  Google Scholar 

  • Elahi N, Duncan RW, Claudio Stasolla C (2016) Effects of altered expression of LEAFY COTYLEDON1 and FUSCA3 on microspore-derived embryogenesis of Brassica napus L. J Genet Eng Biotechnol 14:19–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Freitas NC, Barreto HG, Torres LF, Freire LL, Rodrigues LAZ, Diniz LEC, Beijo LA, Paiva LV (2019) In silico and in vivo analysis of ABI3 and VAL2 genes during somatic embryogenesis of Coffea arabica: competence acquisition and developmental marker genes. Plant Cell, Tissue Organ Cult 137:599–611

    Article  CAS  Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) LEAFY COTYLEDON genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls development timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385

    Article  CAS  PubMed  Google Scholar 

  • George EF, Hall MA, de Klerk GJ (2008) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, p 508

    Google Scholar 

  • Igielski R, Kępczyńska E (2017) Gene expression and metabolite profiling of gibberellin biosynthesis during induction of somatic embryogenesis in Medicago truncatula Gaertn. PLoS ONE 12:e0182055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Suzuki M, Mccarty DR (2014) Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Wiley Interdiscip Rev 3:135–145

    Article  CAS  Google Scholar 

  • Kagaya Y, Okuda R, Ban A, Toyoshima R, Tsutumida K, Usui H, Yamamoto A, Hattori T (2005a) Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis. Plant Cell Physiol 46:300–331

    Article  CAS  PubMed  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R, Usui H, Hattori T (2005b) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406

    Article  CAS  PubMed  Google Scholar 

  • Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible W, Stitt M, Torres-Jerez I, Xiao Y, Redman JC, Wu HC, Cheung F, Town CD, Udvardi MK (2008) A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 4:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurdyukov S, Song Y, Michael B, Sheahan MB, Rose RJ (2014) Transcriptional regulation of early embryo development in the model legume Medicago truncatula. Plant Cell Rep 33:349–362

    Article  CAS  PubMed  Google Scholar 

  • Laux T, Wurschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16:S190–S202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA 107:8063–8070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledwon A, Gaj EMD (2009) LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Rep 28:1677

    Article  CAS  PubMed  Google Scholar 

  • Ledwon A, Gaj EMD (2011) LEAFY COTYLEDON1, FUSCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis. Plant Growth Regul 65:157–167

    Article  CAS  Google Scholar 

  • Liu Z, Ge XX, Qiu WM, Long JM, Jia HH, Yang W, Dutt M, Wu XM, Guo WW (2018) Overexpression of the CsFUS3 gene encoding a B3 transcription factor promotes somatic embryogenesis in Citrus. Plant Sci 277:121–131

    Article  CAS  PubMed  Google Scholar 

  • Luerssen H, Kirik V, Herrmann P, Miséra S (1998) FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764

    Article  CAS  PubMed  Google Scholar 

  • Lumba S, Tsuchiya Y, Delmas F, HezkyJ Provar NJ, Lu QS, McCourt P, Gazzarrini S (2012) The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis. BMC Biol 10:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manan S, Ahmad MZ, Zhang G, Chen B, Haq BU, Yang J, Zhao J (2017) Soybean LEC2 regulates subsets of genes involved in controlling the biosynthesis and catabolism of seed storage substances and seed development. Front Plant Sci 8:1604

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarty DR (1995) Genetic control and integration of maturation and germination pathways in seed development. Annu Rev Plant Biol 46:71–93

    Article  CAS  Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for a rapid growth and bioassays with tobacco tissues cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Nolan KE, Kurdyukov S, Rose RJ (2009) Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J Exp Bot 60:1759–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan KE, Kurdyukov S, Rose RJ (2011) Characterisation of the legume SERK-NIK gene superfamily including splice variants: implications for development and defence. BMC Plant Biol 11:44–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orłowska A, Kępczyńska E (2018) Identification of Polycomb Repressive Complex1, Trithorax group genes and their simultaneous expression with WUSCHEL, WUSCHEL-related Homeobox5 and SHOOT MERISTEMLESS during the induction phase of somatic embryogenesis in Medicago truncatula Gaertn. Plant Cell, Tissue Organ Cult 134:345–356

    Article  CAS  Google Scholar 

  • Orłowska A, Igielski R, Łagowska K, Kępczyńska E (2017) Identification of LEC1, L1L and Polycomb Repressive Complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis. Plant Cell, Tissue Organ Cult 129:119–132

    Article  CAS  Google Scholar 

  • Parcy F, Valon C, Kohara A, Miséra S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTY- LEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9:1265–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revalska M, Vassileva V, Zehirov G, Goormachtig S, Iantcheva A (2017) Assessment of the function and expression pattern of auxin response factor B3 in the model legume plant Medicago truncatula. Turk J Biol 41:66–76

    Article  CAS  Google Scholar 

  • Rohde A, De Rycke R, Beeckman T, Engler G, Van Montagu M, Boerjan W (2000) ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings. Plant Cell 12:35–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose RJ (2019) Somatic embryogenesis in the Medicago truncatula model: cellular and molecular mechanisms. Front Plant Sci 10:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell, Tissue Organ Cult 70:155–161

    Article  CAS  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Bender Y, Boyle K, Fobert PR (2014) High-level expression of sugar inducible gene2 (his2) is a negative regulator of drought stress tolerance in Arabidopsis. BMC Plant Biol 13:170

    Article  CAS  Google Scholar 

  • Shibukawa T, Yazawa K, Kikuchi A, Kamada H (2009) Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in it’s 5’-upstream region. Gene 437:22–31

    Article  CAS  PubMed  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Kao CY, McCarty DR (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9:799–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Wang HH, McCarty DR (2007) Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol 143:902–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan K, Peterson K, Jack T (2008) The plant B3 superfamily. Trends Plant Sci 13:647–655

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukagoshi H, Saijo T, Shibata D, Morikami A, Nakamura K (2005) Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor. Plant Physiol 138:675–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukagoshi H, Morikami A, Nakamura K (2007) Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci USA 104:2543–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Deng D, Zhang V, Wang S, Bian Y, Yin Z (2012) Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Mol Biol Rep 39:6267–6282

    Article  CAS  PubMed  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci 268:2211–2220

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Clemens A, Maximova SN, Guiltinan MJ (2014) The Theobroma cacao B3 domain transcription factor TcLEC2 plays a duel role in control of embryo development and maturation. BMC Plant Biol 14:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman LJ (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Food and Agriculture (NIFA/USDA) Hatch Fund (project WVA00686, Accession 1009357). A fellowship by Brazil’s Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) was provided to H.G.B. These funding programs had no participation in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript. P.F. acknowledges the support from Fundação para a Ciência e a Tecnologia (Lisbon, Portugal) through the research unit “GREEN-it: Bioresources for Sustainability” (UID/Multi/04551/2013).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: VAB, HGB, PF. Performed the experiments: HGB, SAS. Analyzed and interpreted the data: VAB, HGB, SAS. Contributed with reagents and materials: VAB, ACJ, PF. Wrote the manuscript: HGB, VAB. Made critical revisions of content on the manuscript: SAS, VAB, ACJ, PF. All authors read and approved the manuscript.

Corresponding author

Correspondence to Vagner Augusto Benedito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreto, H.G., Ságio, S.A., Chalfun-Júnior, A. et al. Transcriptional profiling of the AFL subfamily of B3-type transcription factors during the in vitro induction of somatic embryogenesis in the model legume Medicago truncatula. Plant Cell Tiss Organ Cult 139, 327–337 (2019). https://doi.org/10.1007/s11240-019-01687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01687-3

Keywords

Navigation