Skip to main content
Log in

Overexpression of the transcription factor MdbHLH33 increases cold tolerance of transgenic apple callus

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

As cold stress greatly affects plant growth and development, understanding the mechanisms underlying cold tolerance in plants is important. In this study, we analyzed the expression levels of apple (Malus domestica) MdbHLH33 and MdCBF1–5 by semi-quantitative PCR after exposure to 4 °C for different amounts of time and generated evolutionary trees for MdbHLH33 and the MdCBFs. Overexpressing MdbHLH33 pro-GUS in ‘Orin’ callus, indicated that transgenic callus had higher GUS activity and was more deeply stained at 4 °C than at 25 °C. Subcellular localization showed that MdbHLH33 was located in the nucleus. Overexpressing MdbHLH33 in ‘Orin’ callus increased the expression level of MdCBF2, MdCOR15A-1, and MdCOR15A-2, and resulted in increased cold tolerance. EMSA and Chip-PCR analysis showed that MdbHLH33 could bind the LTR cis-acting element found in the MdCBF2 promoter. Overexpressing MdCBF2 in ‘Orin’ callus indicated that MdCBF2 could also increase the expression level of MdCOR15A-1 and MdCOR15A-2 and improve cold tolerance; we also found that transgenic callus overexpressing MdCBF2 had reduced MdCBF1 and MdCBF5 expression and increased MdCBF3 and MdCBF4 expression. Overall, these results show that MdbHLH33 can regulate the expression of MdCBF2 and improve the cold tolerance of transgenic callus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

bHLH:

Basic helix–loop–helix

GUS:

β-Glucuronidase

EMSA:

Electrophoretic mobility shift assays

Chip-PCR:

Chromatin immunoprecipitation-polymerase chain reaction

ICE:

Inducer of CBF expression

CBF:

C-repeat-binding factor

CORs:

Cold-responsive genes

MES:

4-Morpholineethanesulfonic acid

References

  • An JP, Yao JF, Wang XN, You CX, Wang XF, Hao YJ (2017) MdHY5 positively regulates cold tolerance via CBF-dependent and CBFindependent pathways in apple. J Plant Physiol 218:275–281

    Article  PubMed  CAS  Google Scholar 

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Chen TL, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93:13404–13409

    Article  PubMed  CAS  Google Scholar 

  • Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M (2008) Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physiol 49:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao- Castro JR, Robertson DL (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, Poplar, Rice, Moss, and Algae. Plant Physiol 153:1398–1412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee B, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feng XM, Zhao Q, Zhao LL, Qiao Y, Xie XB, Li HF, Yao YX, You CX, Hao YJ (2012) The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol 12:22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429:98–103

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced CO gene expression. Plant J 16:433–442

    Article  PubMed  CAS  Google Scholar 

  • Halfhill MD, Millwood RJ, Weissinger AK, Warwick SI, Stewart CN (2003) Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop × weed hybrid generations. TAG Theor Appl Genet 107(8):1533–1540

    Article  PubMed  CAS  Google Scholar 

  • He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ. Wang Z (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydrationresponsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions, beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  PubMed  CAS  Google Scholar 

  • Ji XH, Zhang R, Wang N, Yang L, Chen XS (2015a) Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus (Malus sieversii f. niedzwetzkyana). Plant Cell Tiss Organ Cult 123:389–404

    Article  CAS  Google Scholar 

  • Ji XH, Wang YT, Zhang R, Wu SJ, An MM, Li M, Wang CZ, Chen XL, Zhang YM, Chen XS (2015b) Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell Tissue Organ Cult 120:325–337

    Article  CAS  Google Scholar 

  • Kenneth JL, Thomas DS (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Khidr YA, Flachowsky H, Haselmair‑Gosch C, Thill J, Miosic S, Hanke MV, Stich K, Halbwirth H (2017) Evaluation of a MdMYB10/GFP43 fusion gene for its suitability to act as reporter gene in promoter studies in Fragaria vesca L.‘Rügen’. Plant Cell Tiss Organ Cult 130:345–356

    Article  CAS  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcrip-tome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li JT, Wang L, Zhu W, Wang N, Xin HP, Li SH (2014) Characterization of two VvICE1 genes isolated from ‘Muscat Hamburg’grapevine and their effect on the tolerance to abiotic stresses. Sci Hortic 165:266–273

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu LY, Duan LS, Zhang JC, Zhang ZX, Mi GQ, Ren HZ (2010) Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1exhibits changed morphological characters and enhances chilling tolerance. SciHortic 124:29–33

    CAS  Google Scholar 

  • Lv DM, Zhang YH (2017) Isolation and functional analysis of apple MdHMGR1 and MdHMGR4 gene promoters in transgenic Arabidopsis thaliana. Plant Cell Tiss Organ Cult 129:133–143

    Article  CAS  Google Scholar 

  • Medinab J, Cataláa R, Salinasa J (2011) The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Sci 180:3–11

    Article  CAS  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular response to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  PubMed  CAS  Google Scholar 

  • Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250:161–170

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Viswanathan C, Zhu JK (2002) Molecular genetic analysis of cold-regulated gene transcription. Philos Trans R Soc Lond B Biol Sci 357:877–886

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang N, Qu CZ, Wang YC, Xu HF, Jiang SH, Fang HC, Liu JX, Zhang ZY, Chen XS (2017) MdMYB4 enhances apple callus salt tolerance by increasing MdNHX1 expression levels. Plant Cell Tiss Organ Cult 131:283–293

    Article  CAS  Google Scholar 

  • Wisniewski M, Nassuth A, Teulieres C, Marque C, Rowland J, Cao P-B et al (2014) Genomics of cold hardiness in woody plants. Crit Rev Plant Sci 33:92–124. https://doi.org/10.1080/07352689.2014.870408

    Article  CAS  Google Scholar 

  • Wu RG, Wang Y, Wu T, Xu XF, Han ZH (2017) MdMYB4, an R2R3-Type MYB transcription factor, plays a crucial role in cold and salt stress in apple calli. J Amer Soc Hort Sci 142(2):209–216

    Article  Google Scholar 

  • Xiang DJ, Hu XY, Zhang Y, Yin KD (2008) Overexpression of ICE1 gene in trans-genic rice improves cold tolerance. Rice Sci 15:173–178

    Article  Google Scholar 

  • Xie XB, LI S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apple. Plant Cell Environ 35:1884–1897

    Article  PubMed  CAS  Google Scholar 

  • Xu WR, Jiao YT, Li RM, Zhang NB, Xiao DM, Ding XL, Wang ZP (2014) Chinese wild-growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS ONE 9(7):e102303

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu HF, Wang N, Liu JX, Qu CZ, Wang YC, Jiang SH, Lu NL, Wang DY, Zhang ZY, Chen XS (2017) The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Mol Biol. https://doi.org/10.1007/s11103-017-0601-0

    Article  PubMed  Google Scholar 

  • Yamasaki YJ, Randal SK (2016) Functionality of soybean CBF/DREB1 transcription factors. Plant Sci 246:80–90

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31572091) and National Key Research and Development Project of China (2016YFC0501505). We thank Liwen Bianji, Edanz Group China (http://www.liwenbianji.cn), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

XC and HX: conceived and designed the experiments. HX and NW: performed the experiments. HX: analyzed the data. YW, SJ, HF, JZ, MS, WZ, LX, ZZ: contributed reagents/materials/analysis tools. HX and XC: wrote the paper.

Corresponding author

Correspondence to Xuesen Chen.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 3282 KB)

Supplementary material 2 (TIF 4977 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Wang, N., Wang, Y. et al. Overexpression of the transcription factor MdbHLH33 increases cold tolerance of transgenic apple callus. Plant Cell Tiss Organ Cult 134, 131–140 (2018). https://doi.org/10.1007/s11240-018-1406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1406-9

Keywords

Navigation