Skip to main content
Log in

The expansin gene PttEXPA8 from poplar (Populus tomentosa) confers heat resistance in transgenic tobacco

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Expansins are cell wall proteins involved in cell wall loosening and structural remodeling. In this study, we evaluated the transcript levels of 36 expansin genes in Populus tomentosa under heat stress (42 °C) and normal growth conditions (25 °C). One expansin gene, PttEXPA8, significantly up-regulated in leaves under heat stress, was cloned and transformed into tobacco (Nicotiana tobacum). The transgenic and wild-type tobacco plants were subjected to a 10-day heat treatment, and morphological and physiological parameters (relative electrolyte leakage, malondialdehyde content, chlorophyll content, and superoxide dismutase activity) were measured. The results showed that the transgenic plants were more heat-resistant than the wild-type plants. It concluded that PttEXPA8 could be a valuable gene resource conferring heat resistance. The report here contributes to our knowledge of the functions of expansins in woody plants, and also contributes to our knowledge of the molecular mechanism of heat tolerance in poplar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Belfield EJ, Ruperti B, Roberts JA, McQueen-Mason S (2005) Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot 56:817–823

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Dahal P, Bradford KJ (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127:928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YK, Liu YX, Ding YN, Wang XT, Xu JC (2015) Overexpression of PtPCS enhances cadmium tolerance and cadmium accumulation in tobacco. Plant Cell Tissue Organ Cult 121:389–396

    Article  CAS  Google Scholar 

  • Cho HT, Cosgrove DJ (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:9783–9788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall loosening agents. Proc Natl Acad Sci USA 94:6559–6564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding XH, Cao YL, Huang LL, Zhao J, Xu CG, Li XH, Wang SP (2008) Activation of theindole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dotto MC, Martínez GA, Civello PM (2006) Expression of expansin genes in strawberry varieties with contrasting fruit firmness. Plant Physiol Biochem 44:301–307

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    Article  CAS  Google Scholar 

  • Fleming AJ, Caderas D, Wehrli E, McQueen-Mason S, Kuhlemeier C (1999) Analysis of expansin induced morphogenesis on the apical meristem of tomato. Planta 208:166–174

    Article  CAS  Google Scholar 

  • Geilfus CM, Zörb C, Mühling KH (2010) Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.). Plant Physiol Biochem 48:993–998

    Article  CAS  PubMed  Google Scholar 

  • Goh HH, Sloan J, Dorca-Fornell C, Fleming A (2012) Inducible repression of multiple expansin genes leads to growth suppression during leaf development. Plant Physiol 159:1759–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He XY, Zeng JB, Cao FB, Ahmed IM, Zhang GP, Vincze E, Wu FB (2015) HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot. doi:10.1093/jxb/erv436

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Sta 347:32

    Google Scholar 

  • Ishimaru M, Smith DL, Gross KC, Kobayashi S (2007) Expression of three expansin genes during development and maturation of Kyoho grape berries. J Plant Physiol 164:1675–1682

    Article  CAS  PubMed  Google Scholar 

  • Kam MJ, Yun HS, Kaufman PB, Chang SC, Kim SK (2005) Two expansins, EXP1 and EXPB2, are correlated with the growth and development of maize roots. J Plant Biol 48:304–310

    Article  CAS  Google Scholar 

  • Kwasniewski M, Szarejko I (2006) Molecular cloning and characterization of β-expansin gene related to root hair formation in barley. Plant Physiol 141:1149–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DK, Ahn JH, Song SK, Choi YD, Lee JS (2003) Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol 131:985–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Xing SC, Guo QF, Zhao MR, Zhang J, Gao Q, Wang GP, Wang W (2011) Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J Plant Physiol 168:960–966

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Shi Y, Ding YN, Xu JC (2014) Bioinformatics analysis of expansin gene family in poplar genome. J Beijing For Univ 36(2):59–67

    Google Scholar 

  • Lin C, Choi HS, Cho HT (2011) Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cells 31:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lü P, Kang M, Jiang XQ, Dai FW, Gao JP, Zhang CQ (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559

    Article  PubMed  Google Scholar 

  • McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between wall polymers by proteins that induce plant wall extension. Proc Natl Acad Sci USA 91:6574–6578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plant. Plant Cell 4:1425–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezzotti M, Feron R, Mariani C (2002) Pollination modulates expression of the PPAL gene, a pistil-specific β-expansin. Plant Mol Biol 49:187–197

    Article  CAS  PubMed  Google Scholar 

  • Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming AJ (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Oshita E, Fujimori N, Nakajima Y, Kawagoe Y, Suzuki S (2015) Grape expansins, VvEXPA14 and VvEXPA18 promote cell expansion in transgenic Arabidopsis plant. Plant Cell Tissue Organ Cult 120:1077–1085

    Article  CAS  Google Scholar 

  • Xu JC, Tian J, Belanger FC, Huang BR (2007) Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species. J Exp Bot 58:3789–3796

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Xu X, Shi Y, Xu JC, Huang BR (2014) Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS ONE 9:e100792

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZY, Li FL, Zhu ZT, Kang XY (1997) Doubling technology of pollen chromosome of P. tomentosa and its hybrids. J Beijing For Univ 6:145–153

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank National Natural Science Foundation of China (#J1103516) for funding support.

Author contributions

Jichen Xu designed research; Huabo Liu and Haoyang Li performed research; Haoyang Li, Bingliang Xie and Hao Zhang contributed reagents/analytic tools; Huabo Liu and Jian Li analyzed data; Huabo Liu, Haoyang Li and Jichen Xu wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichen Xu.

Additional information

Huabo Liu and Haoyang Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, H., Zhang, H. et al. The expansin gene PttEXPA8 from poplar (Populus tomentosa) confers heat resistance in transgenic tobacco. Plant Cell Tiss Organ Cult 126, 353–359 (2016). https://doi.org/10.1007/s11240-016-1003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1003-8

Keywords

Navigation