Skip to main content
Log in

Characterization and functional analysis of the PtEXLA1 gene from poplar

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Expansin plays a crucial role in plant growth and stress resistance as a cell wall relaxation protein. The expansin family consists of four subfamilies: EXPA, EXPB, EXLA, and EXLB. However, a few reports have been previously published investigating EXLA genes. The research here aimed to characterize the PtEXLA1 gene from a popular species (P. alba × P. glandulosa CV.84K) and evaluate its role through genetic transformation to understand its contribution to plant growth and stress resistance. The results showed that the PtEXLA1 gene was 780 bp in length, encoded 259 amino acids, and had typical characteristics of EXLA. The PtEXLA1 transgenic tobacco plants had a larger corolla in comparison to wild-type plants, and exhibited higher resistance to drought, high temperature, and salt stress based on the evaluation of chlorophyll content, relative conductivity, and malondialdehyde content. PtEXLA1 can be an efficient gene resource for stress resistance breeding of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are available from the corresponding author upon reasonable request.

References

  • Bae JM, Kwak MS, Noh SA et al (2014) Overexpression of sweet potato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res 23(4):657–667

    Article  CAS  PubMed  Google Scholar 

  • Baker C, Mock N (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue Organ Cult 39:7–12

    Article  Google Scholar 

  • Boron AK, Loock BV, Suslov D et al (2015) Overexpression of AtEXLA2 alters etiolated Arabidopsis hypocotyl growth. Ann Bot 115(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Casas-Mollano JA, Lao NT, Kavanagh TA (2006) Intron-regulated expression of suvh3, an Arabidopsis su(var)3–9 homologue. J Exp Bot 57(12):3301–3311

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Han Y, Zhang M et al (2016) Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS ONE 11(4):e0153494

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Luo Y, Wang G et al (2020) Genome-wide identification of expansin genes in Brachypodium distachyon and functional characterization of bdexpa27. Plant Sci 296:110490

    Article  CAS  PubMed  Google Scholar 

  • Chen GH, Wang P, Shi L (2021) Research progress on the active role of cell walls in plant disease resistance responses. J Inner Mong Agric Univ 42(05):117–120

    CAS  Google Scholar 

  • Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67(2):463–476

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Andres RM, Cao-Delgado AI (2020) The physiology of plant responses to drought. Science 368(6488):266–269

    Article  CAS  PubMed  ADS  Google Scholar 

  • Han X, Li XY, La GX et al (2015) Identification and bioinformatics analysis of cucumber extended protein gene families. Mol Plant Breed 13(10):2280–2289

    Google Scholar 

  • Hirsh AE, Fraser HB (2001) Protein dispensability and rate of evolution. Nature 411:1046–1049

    Article  CAS  PubMed  ADS  Google Scholar 

  • Jiang F, Lopez A, Jeon S et al (2019) Disassembly of the fruit cell by the ripening-associated polygalacturonase and expansin influences tomato cracking. Hortic Res 6(1):17–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy P, Hong JK, Kim JA et al (2015) Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication. Mol Genet Genomics 290(2):521–530

    Article  CAS  PubMed  Google Scholar 

  • Li H, Shi Y, Ding Y et al (2014) Bioinformatics analysis of poplar extended protein gene families. J Beijing for Univ 36(02):59–67

    Google Scholar 

  • Liu H, Li H, Zhang H et al (2016) The expansin gene PttEXPA8 from poplar (Populus tomentosa) confers heat resistance in transgenic tobacco. Plant Cell Tissue Organ Cult 126(2):353–359

    Article  CAS  Google Scholar 

  • Lu PT, Kang M, Jing XQ et al (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237(6):1547–1559

    Article  PubMed  Google Scholar 

  • Luo Y, Zhang C, Fu JX et al (2017) Identification and expression analysis of Osmanthus expansin protein gene families. J Agric Biotechnol 25(08):1289–1299

    Google Scholar 

  • Lv J, Zheng T, Song Z et al (2022) Strawberry proteome responses to controlled hot and cold stress partly mimic post-harvest storage temperature effects on fruit quality. Front Nutr 8:812666

    Article  PubMed  PubMed Central  Google Scholar 

  • Malko DB, Makeev VJ, Mironov AA et al (2006) Evolution of exon–intron structure and alternative splicing in fruit flies and malarial mosquito genomes. Genome Res 16(4):505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh SA, Lee HS, Kim YS et al (2015) Expression of expansin genes in the pulp and dehiscence zone of ripening durian (Durio zibethinus) fruit. J Plant Physiol 182:33–39

    Article  Google Scholar 

  • Rogozin IB, Carmel L, Csuros M et al (2012) Origin and evolution of spliceosomal introns. Biol Direct 7(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampedro J, Lee Y, Carey RE et al (2005) Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J 44:409–419

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Xu X, Li H et al (2014) Bioinformatics analysis of the rice extended protein family. Hereditas 36(08):809–820

    CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Virginie M, Tran PLT, Charlotte S et al (2011) G-quadruplex structures in tp53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis 32(3):271–278

    Article  Google Scholar 

  • Wang G, Yan G, Wang J et al (2011) Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes clexpa1 and clexpa2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol J 9(4):486–502

    Article  CAS  PubMed  Google Scholar 

  • Wang RX, Yang RX, Yin P et al (2021) Identification and characterization of the expansin gene in Ginkgo biloba. Mol Plant Breed 19(06):1741–1749

    Google Scholar 

  • Xu N, Gu H, Shen Y et al (2009) Effects of temperature on the changes of cell wall components in Italian ryegrass. Chin J Grassl 31(2):70–75

    Google Scholar 

  • Yan A, Wu M, Yan L et al (2014) AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS ONE 9(1):e85208

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Yang RX, Liu XR, Lan BL et al (2021a) Identification and evaluation of the expansin genes in Salix purpurea genome. Mol Plant Breed 19(08):2538–2549

    Google Scholar 

  • Yang RX, Yin P, Liu X et al (2021b) Expansin gene family in association with the genome differentiation of Salix matsudana. J Beijing for Univ 43(1):37–48

    Google Scholar 

  • Yang RX, Yang LH, Wang X et al (2023) Over-expression of the Salix matsudana expansin gene SmEXPA23 enhances plant salt tolerance. Plant Cell Tissue Organ Cult 152:309–316

    Article  CAS  Google Scholar 

  • Yao XC, Meng LF, Zhao WL et al (2023) Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress. Front Plant Sci 14:1090366

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ding Y, Zhi J et al (2018) Over-expression of the poplar expansin gene PtoEXPA12 in tobacco plants enhanced cadmium accumulation. Int J Biol Macromol 116:676–682

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li J, Wang RX et al (2019a) Comparative analysis of codon usage pattern of expansin genes from eight plant species. J Biomol Struct Dyn 37(4):910–917

    Article  PubMed  Google Scholar 

  • Zhang H, Liu H, Yang R et al (2019b) Over-expression of PttEXPA8 gene showed various resistances to diverse stresses. Int J Biol Macromol 130:50–57

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Zhou L, Wang Y et al (2022) Effect of temperature on the content and composition of tobacco leaf cell wall substances. Jiangsu J Agric Sci 38(01):39–48

    Google Scholar 

  • Zhu YM (2019) The role of OfSVP transcription factors and dilated proteins in Osmanthus fragrans flowering. Master's thesis.

Download references

Acknowledgements

The research was funded by the National Natural Science Foundation of China (#31870648)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichen Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, Y., Yang, L. et al. Characterization and functional analysis of the PtEXLA1 gene from poplar. Plant Biotechnol Rep 18, 119–128 (2024). https://doi.org/10.1007/s11816-023-00885-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-023-00885-y

Keywords

Navigation