Skip to main content
Log in

Molecular cloning and expression of a vacuolar Na+/H+ antiporter gene (AgNHX1) in fig (Ficus carica L.) under salt stress

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Soil salinity can be a major limiting factor for productivity in agriculture and forestry and in order to fully utilize saline lands productively in plantation forestry for fig production, the genetic modification of tree species for salt tolerance may be required. Na+/H+ antiporters have been suggested to play important roles in salt tolerance in plants. Here, we isolated AgNHX1 a vacuolar Na+/H+ antiporter from a halophytic species Atriplex gmelini and introduced it into fig (Ficus carica L.) cv. Black Mission via Agrobacterium-mediated transformation. Leaf discs explants of fig were co-cultivated for 2 days with Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pBI121 containing the AgNHX1 gene and the hpt selectable marker gene which encodes hygromycin phosphotransferase. Explants were cultured on MS medium containing 30 mg L−1 hygromycin, 3 % sucrose, 0.2 mg L−1 kinetin and 2.0 mg L−1 2,4-dichlorophenoxyacetic acid solidified with 2.5 g L−1 phytagel in darkness for callus formation. The calli were cultured on MS medium containing 2.0 mg L−1 zeatin riboside in combination with 0.4 mg L−1 indole acetic acid in the light for plant regeneration. Putative regenerated transformant shoots were confirmed by polymerase chain reaction (PCR) and Southern hybridization for the AgNHX1 gene. Reverse transcriptase polymerase chain reaction analysis indicated that the gene was highly expressed in transgenic plants, but the degree of this expression varied among transformants. Overexpression of the AgNHX1 gene conferred high tolerance to salt stress and transgenic fig plants overexpressing AgNHX1 developed normally under salinity conditions compared to those of non-transgenic plants. Salt treated transgenic plants contained high proline and K+ but less Na+ compared to non-transgenic control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

2ip:

N-6-(Δ2-isopentenyl) adenine

BAP:

Benzylaminopurine

CTAB:

Cetyltrimethylammonium bromide

Hpt :

Hygromycin phosphotransferase

IAA:

Indole acetic acid

IBA:

Indole-3-butaric Acid

LB:

Luria broth medium

NAA:

α-Naphthaleneacetic acid

OD:

Optical density

ORF:

Opening reading frame

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcriptase polymerase chain reaction

TDZ:

Thiadiazuron (N-phenyl-N-1,2,3,-thiadiasol-5-ylurea)

ZR:

Zeatin riboside

References

  • Abdel-Wanis A, Abdel-Baky M, Salman S (2012) Effect of grafting and salt stress on the growth, yield and quality of cucumber grown in NFT system. J Appl Sci Res 8:50–59

    Google Scholar 

  • Akdemir H, Gago J, Gallego P, Ciftci Y (2012) Recent advances in fruit species transformation, transgenic plants—advances and limitations, PhD. Yelda Ozden Çiftçi (Ed.), ISBN: 978-953-51-0181-9, In Tech. doi:10.5772/35139. http://www.intechopen.com/books/transgenic-plants-advances-and-limitations/recent-advances-in-fruit-species-transformation

  • Angenon G, Dillen W, Montagu MV (1994) Antibiotic resistance markers for plant transformation. Plant Mol Biol Manual C1:1–13

    Google Scholar 

  • Anjum S, Xie X, Wang L, Saleem M, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Apse M, Blumwald E (2007) Na transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Azafadi MA (2012) Genetic and biochemical properties of apples that affect storability and nutritional value. PhD Thesis, Swedish University of Agricultural Sciences, Swedish

  • Bakhsh A, Hussain T (2015) Engineering crop plants against abiotic stress: current achievements and prospects. Emir J Food Agric 27:24–39

    Google Scholar 

  • Bassil E, Tajima H, Liang Y, Ohto M, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011) The arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassil E, Coku C, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 16:5727–5740

    Article  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhauso T, Radhakrishnan T, Kumar A, Mishra G, Dobaria J, Patet K, Rajam M (2014) Over-expression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol. Sci World J 2014; Article ID 125967. doi:10.1155/2014/125967

  • Blumwald E (1987) Tonoplast vesicles for the study of ion transport in plant vacuoles. Physiol Plant 69:731–734

    Article  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella M (2003) Developing salt tolerant plants in a new century: a molecular biology approach.). Plant Cell Tiss Org Cult 73:101–115

    Article  CAS  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  CAS  PubMed  Google Scholar 

  • Cosson V, Eschstruth A, Pascal Ratet (2015) Medicago truncatula transformation using leaf explants. Methods Mol Biol 1223:43–56

    Article  PubMed  Google Scholar 

  • Dhage S, Pawar B, Chimote V, Jadhav A, Kale A (2012) In vitro callus induction and plantlet regeneration in fig (Ficus carica L.). J Cell Tissue Res 12:1–6

    Google Scholar 

  • Dorani-Uliaie E, Ghareyazie B, Farsi M, Kogel K, Imani J (2012) Improved salt tolerance in canola (Brasica napus) plants by overexpression of arabidopsis Na+/H+ antiporter gene AtNHX1. J Plant Mol Breed 1:34–42

    Google Scholar 

  • Duncan DB (1955) Multiple range and multiple “F” test. Biometrics 11:1–42

    Article  Google Scholar 

  • Flaishman M, Rodov V, Stover E (2008a) The fig: botany, horticulture and breeding. In: Janick J (ed) Horticulture review. Wiley, New York; ISBN:9780470171530

  • Flaishman M, Yablovich Z, Golobovich S, Salamon A, Cohen Y, Perl A, Yancheva S, Kerem Z, Haklay E (2008b) Molecular breeding in fig (Ficus carica) by the use of genetic transformation. Acta Hortic 798:151–158

    Article  CAS  Google Scholar 

  • Flowers T, Colmer T (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers T, Yeo A (1986) Ion relations of plants under drought and salinity. Aust J Plant Physiol 13:75–91

    Article  CAS  Google Scholar 

  • Fukuda Y, Ohme M, Shinshi H (1991) Gene structure and expression of a tobacco endochitinase gene in suspension-cultured cells. Plant Mol Biol 16:1–10

    Article  CAS  PubMed  Google Scholar 

  • Gisbert C, Rus M, Bolarin C, Lopez-Coronado M, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalohytes. Ann Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Zhu Y, Itoh K, Kimura Y, Izawa T, Shimamoto K, Toriyama S (1992) Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc Natl Acad Sci USA 89:9865–9869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Htwe N, Ling H, Zaman F, Mazizh M (2014) Plant genetic transformation efficiency of selected Malaysian rice based on selectable marker gene (hptII). Pak J Biol Sci 17:472–481

    Article  PubMed  Google Scholar 

  • Hui Z, Yaxin L, Yuan X, Sean C, Andrew L, Tao X (2012) A newly isolated Na+/H+ antiporter gene, DmNHX1, confers salt tolerance when expressed transiently in Nicotiana benthamiana or stably in Arabidopsis thaliana. Plant Cell Tiss Org Cult 110:189–200

    Article  Google Scholar 

  • Jackson ML (1985) Soil chemical analysis. Prentic-Hall, Englewood Cliffs

    Google Scholar 

  • Jariteh M, Ebrahimzadeh H, Niknam V, Mirmasoumi M, Yahdati K (2015) Developmental changes of protein, proline and some antioxidant enzymes activities in somatic and zygotic embryos of Persian walnut (Juglans regia L.). Plant Cell Tiss Org Cult 122:101–115

    Article  CAS  Google Scholar 

  • Khan MS (2011) Role of sodium and hydrogen (Na+/H+) antiporters in salt tolerance of plants: present and future challenges. Afr J Biotechnol 10:13693–13704

    Article  CAS  Google Scholar 

  • Khan M, Duke N (2001) Halophytes—a resource for the future. Wetl Ecol Manag 6:455–456

    Article  Google Scholar 

  • Kim K, Kim M, Yun P, Chandrasekhar T, Lee H, Song P (2007) Production of multiple shoots and plant regeneration from leaf segments of fig tree (Ficus carica L.). J Plant Biol 50:440–446

    Article  CAS  Google Scholar 

  • Küden AB (1996) Plant genetic resources of Fig, Mediterranean Selected Fruits Intercountry Network (MESFIN) under the aegis of FAO, Rome, Italy

  • Kumar V, Shriram V, Kavi-Kishor P, Jawali N, Shitole M (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48

    Article  Google Scholar 

  • Lassner M, Peterson P, Yoder J (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128

    Article  CAS  Google Scholar 

  • Li J, Jiang G, Huang P, Ma J, Zhang F (2007) Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tiss Org Cult 90:41–48

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Feng F, Liang D, Cheng L, Ma F, Shi S (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tiss Org Cult 102:337–345

    Article  CAS  Google Scholar 

  • Lifang W, Hong L, Huiyun F, Lijun W, Zengliang Y (2001) Introduction of rice chitinase gene into wheat via low energy Ar+ beam implantation. Chin Sci Bull 46:318–322

    Article  Google Scholar 

  • Liu H, Wang Q, Yu M, Zhang Y, Wu Y, Zhang H (2008) Transgenic salt- tolerance sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, Atnhx3, accumulate more soluble sugar but less salt in storage roots. Plant Cell Environ 31:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Lu SY, Chen CH, Wang ZC, Guo ZF, Li HH (2009) Physiological responses of somaclonal variants of triploid bermudagrass (Cynodon transvaalensis x Cynodon dactylon) to drought stress. Plant Cell Rep 28:517–526

    Article  CAS  PubMed  Google Scholar 

  • Lum A, Hanafi M, Rafii Y, Akmar A (2014) Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J Anim Plant Sci 24:1487–1493

    Google Scholar 

  • Maris P, Eduardo B (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  Google Scholar 

  • Meneses C, Orellana A (2013) Using genomics to improve fruit quality. Biol Res 46:347–352

    Article  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salt tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Niu X, Narasimhan M, Salzman R, Bressan R, Hasegawa P (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103:713–718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajabi F, Vazan S (2013) Effect of salinity on Na+ and K+ compartmentation in salt tolerant and sensitive wheat genotypes. Sch J Agric Sci 3:358–366

    Google Scholar 

  • Razzaque S, Chakraborty D, Tammil R, Elias S, Seraj Z, Islam A (2014) Cloning of three aniporter genes from arabidopsis and rice for over-expressing them in farmer popular tomato varieties of Bangladesh. Am J Plant Sci 5:3957–3963

    Article  CAS  Google Scholar 

  • Reynaerts A, De Block M, Hernalsteens J, Van Montagu M (1988) Selectable and screenable markers. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp A9:1–16

  • Roohi A, Nazish B, Nabgha-e-Amen Maleeha M, Waseem S (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5:7108–7118

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 2. Gold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Singh H, Bhattacharyya N, Agarwala N, Bhagawati P, Deka M, Das S (2014) Exogenous gene transfer in Assam tea [Camellia assamica (Masters)] by Agrobacterium-mediated transformation using somatic embryo. Eur J Exp Biol 4:166–175

    CAS  Google Scholar 

  • Sjahril R, Chin DP, Khan RS, Yamamura S, Nakanmura I, Amemiya Y, Mii M (2006) Transgenic Phalaenopsis plants with resistance to Erwinia carotovora produced by introducing wasabi defensin gene using Agrobacterium method. Plant Biotechnol 23:191–194

    Article  CAS  Google Scholar 

  • Snedecor G, Cochran W (1967) Statistical methods, 6th edn. Iowa State University Press, Ames

    Google Scholar 

  • Soliman H, Gabr M, Abdallah N (2010) Efficient transformation and regeneration of fig (Ficus carica L.) via somatic embryogenesis. GM Crops Food 1:42–53

    Article  Google Scholar 

  • Tóth G, Montanarella L, Rusco E (2008) Update map of salt affected soils in the European Union. In: Tóth G, Montanarella L, Rusco E (eds) Threats to soil quality in Europe. Office for Official Publications of the European Communities, Luxembourg, pp 61–74

    Google Scholar 

  • Twyman R, Stöger E, Kholi A, Capell T, Christou P (2002) Selectable and screenable markers for rice transformation. In: Jackson J, Linskens H, Inman R (eds) Molecular methods of plant analysis. Springer, Heidelberg, pp 1–17

    Google Scholar 

  • Watanabe A, Kojima K, Ide Y, Sasaki S (2000) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tiss Org Cult 63:199–206

    Article  CAS  Google Scholar 

  • Xuea Z, Zhi D, Xueb G, Zhang H, Zhaoc Y, Xia G (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  Google Scholar 

  • Yakushiji H, Mase N, Sato Y (2003) Adventitious bud formation and plantlet regeneration from leaves of fig (Ficus carica L.). J Hort Sci Biotechnol 78:874–878

    CAS  Google Scholar 

  • Yamaguchi T, Apse M, Shi H, Blumwald E (2003) Topological analysis of a plant vacuolar N+/H +antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc Natl Acad Sci USA 100:12510–12515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yancheva S, Golubowicz S, Yablowicz Z, Perl A, Flaishman M (2005) Efficient Agrobacterium-mediated transformation and recovery of transgenic fig (Ficus carica L.) plants. Plant Sci 168:1433–1441

    Article  CAS  Google Scholar 

  • Yi D, Cui L, Wang L, Liu Y, Zhuang M, Zhang Y, Zhang J, Lang Z, Zhang Z, Fang Z, Yang L (2013) Pyramiding of Bt cry1Ia8 and cry1Ba3 genes into cabbage (Brassica oleracea L. var. capitata) confers effective control against diamondback moth. Plant Cell Tiss Organ Cult 115:419–428

    Article  CAS  Google Scholar 

  • Yu JN, Huang J, Wang ZN, Zhang JS, Chen SY (2007) An Na+/H+ antiporter gene from wheat plays an important role in stress tolerance. J Bio Sci 32:1153–1161

    CAS  Google Scholar 

  • Zhang H, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhi D, Xue Z, Liu H, Xia G (2007) Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. J Plant Physiol 164:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2007) Plant salt stress. eLS. doi:10.1002/9780470015902.a0001300.pub2

    Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant number (3-965-35-RG). The authors, therefore, acknowledge with thanks DSR technical and financial support. The authors are thankful to the Tissue culture and Biotechnology Labs., Marout Research Station, Desert Research Center, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab M. R. Metwali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metwali, E.M.R., Soliman, H.I.A., Fuller, M.P. et al. Molecular cloning and expression of a vacuolar Na+/H+ antiporter gene (AgNHX1) in fig (Ficus carica L.) under salt stress. Plant Cell Tiss Organ Cult 123, 377–387 (2015). https://doi.org/10.1007/s11240-015-0842-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0842-z

Keywords

Navigation