Skip to main content
Log in

Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Doubled haploid (DH) technology allows for the production of pure lines, useful for plant breeding, through a one-generation procedure that reduces considerably the time and resources needed to produce them. Despite the advantages of microspore culture to obtain DHs, this technique is still insufficiently developed in eggplant, where DHs are produced from microspore-derived calli through organogenesis. At present, very little is known on the best in vitro conditions to promote this process. This is why in this work we addressed the optimization of the process of regeneration of eggplant DH plants from microspore-derived calli. We evaluated the effect of different media compositions in the induction of organogenesis, in the promotion of shoot growth and elongation, and in root growth. According to our results, we propose the repeated subculture of the calli in MS medium with 0.2 mg/l IAA and 4 mg/l zeatin to produce shoots, and then the repeated subculture of the excised shoots in basal MS medium to promote their conversion into entire plantlets. This procedure yielded 7.6 plants per 100 cultured calli, which represents a ~4× increase with respect to previous reports. We also evaluated by flow cytometry and SSR molecular markers the effect of these in vitro culture conditions in the rate of DH plant production, finding that ~70 % of the regenerated plants were true DHs. These results substantially improve the efficiencies of DH recovery published to date in eggplant, and may be useful to those working in the field of eggplant doubled haploidy and breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

BA:

6-Benzyladenine

DH:

Doubled haploid

GA3 :

Giberellic acid

IAA:

Indole acetic acid

MDE:

Microspore-derived embryo

References

  • Asif M, Eudes F, Randhawa H, Amundsen E, Spaner D (2014) Phytosulfokine alpha enhances microspore embryogenesis in both triticale and wheat. Plant Cell Tissue Organ Cult 116:125–130

    Article  CAS  Google Scholar 

  • Borgato L, Conicella C, Pisani F, Furini A (2007) Production and characterization of arboreous and fertile Solanum melongena plus Solanum marginatum somatic hybrid plants. Planta 226:961–969

    Article  CAS  PubMed  Google Scholar 

  • Castillo AM, Nielsen NH, Jensen A, Vallés MP (2014) Effects of n-butanol on barley microspore embryogenesis. Plant Cell Tissue Organ Cult 117:411–418

    Article  CAS  Google Scholar 

  • Corral-Martínez P, Seguí-Simarro JM (2012) Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica 187:47–61

    Article  Google Scholar 

  • Corral-Martínez P, Seguí-Simarro JM (2014) Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica 195:369–382

    Article  Google Scholar 

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104:359–373

    Article  Google Scholar 

  • Dumas de Vaulx R, Chambonnet D (1982) Culture in vitro d’anthères d’aubergine (Solanum melongena L.): stimulation de la production de plantes au moyen de traitements à 35°C associés à de faibles teneurs en substances de croissance. Agronomie 2:983–988

    Article  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  CAS  PubMed  Google Scholar 

  • Eshaghi ZC, Abdollahi MR, Moosavi SS, Deljou A, Seguí-Simarro JM (2015) Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell Tissue Organ Cult 1–9. doi:10.1007/s11240-015-0768-5

  • Franklin G, Sheeba CJ, Sita GL (2004) Regeneration of eggplant (Solanum melongena L.) from root explants. In Vitro Cell Dev Biol Plant 40:188–191

    Article  Google Scholar 

  • Gisbert C, Prohens J, Nuez F (2006) Efficient regeneration in two potential new crops for subtropical climates, the scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants. New Zeal J Crop Hort Sci 34:55–62

    Article  Google Scholar 

  • Kaur M, Dhatt AS, Sandhu JS, Gosal SS (2011) In vitro plant regeneration in brinjal from cultured seedling explants. Indian J Hortic 68:61–65

    Google Scholar 

  • Kim M, Park E-J, An D, Lee Y (2013) High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:191–201

    Article  CAS  Google Scholar 

  • Miyoshi K (1996) Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L). Plant Cell Rep 15:391–395

    Article  CAS  PubMed  Google Scholar 

  • Mohinuddin AKM, Chowdhury MKU, Abdullah Zaliha C, Napis S (1997) Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell Tissue Organ Cult 51:75–78

    Article  Google Scholar 

  • Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant growth regulators III: gibberellins, ethylene, abscisic acid, their analogues and inhibitors; miscellaneous compounds. In George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3 edn, vol 1. Springer, Dordrecht

  • Parra-Vega V, Renau-Morata B, Sifres A, Seguí-Simarro JM (2013) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:353–360

    Article  CAS  Google Scholar 

  • Rotino GL (1996) Haploidy in eggplant. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 3. Kluwer, Dordrecht, pp 115–141

    Chapter  Google Scholar 

  • Salas P, Prohens J, Seguí-Simarro JM (2011) Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 182:261–274

    Article  CAS  Google Scholar 

  • Seguí-Simarro JM (2015) Androgenesis in solanaceae. In Germanà MA, Lambardi M (eds), In vitro embryogenesis. Springer Science + Business Media, The Netherlands

  • Seguí-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861

    Google Scholar 

  • Seguí-Simarro JM, Corral-Martínez P, Parra-Vega V, González-García B (2011) Androgenesis in recalcitrant solanaceous crops. Plant Cell Rep 30:765–778

    Article  PubMed  Google Scholar 

  • Sgamma T, Thomas B, Muleo R (2015) Ethylene inhibitor silver nitrate enhances regeneration and genetic transformation of Prunus avium (L.) cv Stella. Plant Cell Tissue Organ Cult 120:79–88

    Article  CAS  Google Scholar 

  • Shivaraj G, Rao S (2011) Rapid and efficient plant regeneration of eggplant (Solanum melongena L.) from cotyledonary leaf explants. Indian J Biotechnol 10:125–129

    CAS  Google Scholar 

  • Tuberosa R, Sanghineti MC, Conti S (1987) Anther culture of eggplant Solanum melongena L. lines and hybrids. Genética Agrária 41:267–274

    Google Scholar 

  • Veen H, van de Geijn S (1978) Mobility and ionic form of silver as related to longevity of cut carnations. Planta 140:93–96

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Yu Y, Luo X, Zhang JN, Zhao B, Guo YD (2010) High efficiency organogenesis and analysis of genetic stability of the regenerants in Solanum melongena. Biol Plant 54:231–236

    Article  CAS  Google Scholar 

  • Zhang P, Phansiri S, Puonti-Kaerlas J (2001) Improvement of cassava shoot organogenesis by the use of silver nitrate in vitro. Plant Cell Tissue Organ Cult 67:47–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Rosa Peiró for her statistical advice, and the staff of the COMAV greenhouses for their valuable help. This work was supported by the AGL2014-55177-R grant from Spanish MINECO to JMSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Seguí-Simarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas-Sendra, A., Corral-Martínez, P., Camacho-Fernández, C. et al. Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell Tiss Organ Cult 122, 759–765 (2015). https://doi.org/10.1007/s11240-015-0791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0791-6

Keywords

Navigation