Skip to main content
Log in

Improving fruit quality in tomato (Lycopersicum esculentum Mill) under heat stress by silencing the vis 1 gene using small interfering RNA technology

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Constantly elevated temperatures cause an array of physio-biochemical changes in tomato (Lycopersicum esculentum Mill.) which make the fruit ripen quickly and up to 50 % yield loss. The development of tomato cultivars, using genetic engineering approaches which delay ripening, offers a new way to keep tomatoes healthy under heat stress. Over-expression of small heat shock protein gene, viscosity 1 (vis 1) plays a role in increasing juice viscosity, early ripening and tissue soften which emphasizes the importance of this gene in premature ripening. The aim of this work was therefore to develop a useful system for silencing the vis1 gene using small interfering RNA strategy. Agrobacterium strain GV3101 harbouring the binary vector pICBV19 containing the gus and bar genes was used to adapt the transformation process in this study. The primers were designed to amplified the first exon of the vis 1 gene and the amplified fragment was used for cloning into the pFGC5941 at XhoI/NcoI site at sense orientation then additional fragment was subsequently cloned at BamHI/XbaI to form sense/antisense cloned fragment interrupted by the CHSA-intron Agrobacterium strain LBA4404 with the binary vector pFGC5941 which harbors vis1 gene under the control of the 35S promoter containing bar gene under the control of a mannopine synthase 2′(Mas2′) as selectable marker, was used to reduce the expression of vis1 gene in fruit. Polymerase chain reaction (PCR), RT–PCR and northern blotting analysis were applied to detect putative transgenic plants. Significantly, silencing of vis 1 gene was potently occur and new transgenic tomato cultivars were produced with enhanced ripening qualities for recommendation for growing under heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

BAP 6:

Benzylaminopurine

dsRNA:

Double strand RNA

IAA:

Indole-3-acetic acid

IR:

Inverted repeat

LB:

Luria broth medium

MCS:

Multiple cloning site

NAA 1:

Naphthaleneacetic acid

nt:

Nucleotide

RISC:

RNA induced silencing complex

RNAi:

RNA interference

shRNA:

Short hairpin RNA

siRNA:

Short interfering RNA

ZEA:

Zeatin

References

  • Ahmed F, Ghandi H, Dhia H (2008) Transformation of tomato with TYLCV gene silencing construct using optimized Agrobacterium-mediated protocol. Biotechnol 7:537–543

    Article  Google Scholar 

  • Ajenifujah-Soleba S, Isu N, Olorade O, Ingelbrecht I (2013) Effect of cultivar and explants type on tissue culture regeneration of three Nigerian cultivars of tomatoes. Sustain Agric Res 2:58–64

  • Altschul S, Gish W, Miller W, Myers W, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Amber A, Zubeda C, Rasheed K, Hamid R, Sabaz A (2009) Effect of GA3 on regeneration response of three tomato cultivars (Lycopersicon esculentum). Pak J Bot 41:143–151

    Google Scholar 

  • Biggs M, Ropert H, Avtar H (1986) Changes in gene expression during tomato fruit ripening. Plant Physiol 81:395–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brummell D, Harpster H, Civello M, Palys M, Bennett B, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  CAS  PubMed  Google Scholar 

  • Devi R, Dhaliwal M, Kaur K, Gosal S (2008) Effect of growth regulators on in vitro morphogenic response of tomato. Indian J Biotechnol 7:526–530

  • Dipak G, Nusrat A, Moumita G, Soumitra P (2014) RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell Tissue Organ Cult 118:229–243

    Article  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Elbashir M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21- and 22- nucleotide RNAs. Genes Dev 15:188–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu D, Uauy C, Blechl A, Dubcovsky J (2007) RNA interference for functional gene analysis. Transgenic Res J 16:689–701

    Article  CAS  Google Scholar 

  • Graham B, lars Q, Natalie H, Sandra K, Gathie H (2013) Fruit development and ripening. Ann Rev Plant Biol 64:219–241

    Article  Google Scholar 

  • Grierson D, Fray R, Hamilton A, Smith C, Watson C (1991) Does co-suppresion of sense gene in transgenic plants plants involve antisense RNA? Trend Biotechnol 9:122–123

    Article  Google Scholar 

  • Habib K, Aida N, Sandra G, Khaled M (2009) Optimization of regeneration and transformation parameters in tomato and improvement of its salinity and drought tolerance. Afr J Biotechnol 8:6068–6076

    Google Scholar 

  • Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and independent cell to cell movement of RNA silencing. EMBO J 22:4523–4533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Indrani C, Priyanka S, Arijit B, Priya S, Sana J, Autashi S (2013) In vitro callus induction, regeneration and micropropagation of Solanum lycopersicum. Int J Curr Microbiol Appl Sci 2:192–197

    Google Scholar 

  • Jaskani M, Qasim M, Sherani J, Hussain Z, Abbas H (2005) Effect of growth hormones on shoot proliferation of rose cultivars. Pak J Bot 37:875–881

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusion: β-glucuronidase as sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lassner M, Peterson P, Yoder J (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–127

    Article  CAS  Google Scholar 

  • Mahmoud O, Zahra K, Mohammad A, Mojtaba K, Kosar M (2013) Effect of growth regulators and explants on plant regeneration of Solanum lycopersium L. var cerasiforme. Rus Agric Sci 39:226–235

    Article  Google Scholar 

  • Marı´a V, Julia B, Claudio O, Martin A, Vero´nica L, Ricardo M, Carlos S, Marı´a F (2009) Biochemical and proteomic analysis of ‘Dixiland’ peach fruit (Prunus persica) upon heat treatment. J Exp Bot 60:4315–4333

    Article  Google Scholar 

  • Marouane M, Driss I, Sripada M, Abdelaziz E, Sanaa A, Mohammed I, Elmostafa E (2014) Development of specific primers for the detection of HVA1 from barley in transgenic durum wheat by polymerase chain reaction (PCR) technology. Afr J Biotechonol 13:581–592

    Article  Google Scholar 

  • Metwali EMR (2006) Improving abiotic stress resistance in cauliflower (Brassica oleracea var. botrytis L.) by mutagenesis and Agrobacterium mediated transformation. PhD thesis, University of Plymouth, UK

  • Metwali E, Fuller M, Jellings A (2012) Agrobacterium mediated transformation of anti-stress genes into cauliflower (Brassica oleracea var botrytis L.). 2. Transformation and confirmation of stress tolerance. Aust J Bas App Sci 6:31–39

    CAS  Google Scholar 

  • Miller P, Lanier W, Brandt S (2001) Using growing degree days to predict plant stages. Extension Communications Coordinator, Communications Services, Montana State University-Bozeman, Bozeman, pp 1–8

    Google Scholar 

  • Mohamad A, Ismail R, Kadir A, Saud M (2011) In vitro performances of hypocotyls and cotyledon explants of tomato cultivars under sodium chloride stress. Afr J Biotechnol 10:8757–8764

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagel R, Elliot A, Masel A, Birch RG, Manners JM (1990) Electroporation of binary Ti plasmid vector into Agrobacterium tumefaciens and Agrobacterium rizogenes. FEMS Microbiol Lett 67:325–328

    Article  CAS  Google Scholar 

  • Nan K, Seon J, Hwa Y, Nguyen C, Kwon T, Moon Y, Tae K (2013) Amylase and cysteine proteinase gene knockdown in rice cells using RNA interference for enhancing production of recombinant proteins. Plant Cell Tissue Organ Cult 114:97–107

    Article  Google Scholar 

  • Nevena N, Ivan A, Krasimir R, Svetlana P, Lazar K, Atanas A (2005) Advances in development of transgenic resistance to beet necrotic yellow vein virus (BNYVV) in sugar beet. Genetics 37:181–189

    Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H (2003) RNA interference—producing decaffeinated coffee plants. Nature 423:823

    Article  CAS  PubMed  Google Scholar 

  • Parasharami V, Naika V, Arnold S, Nadgauda R, Clapham D (2006) Stable transformation of mature zygotic embryos and regeneration of transgenic plants of chir pine (Pinus roxbughii Sarg.). Plant Cell Rep 24:708–714

    Article  CAS  PubMed  Google Scholar 

  • Praveen M, Rama S (2009) Efficiency in vitro plant regeneration, flowering and fruiting of dwarf tomato cv. Micro-Msk. Plant Omics J 2:98–102

  • Propper ZA, Michel G, Hervé C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Ann Rev Plant Biol 62:567–590

    Article  Google Scholar 

  • Robertson WR, Clark K, Young JC, Sussman MR (2004) An Arabidopsis thaliana plasma membrane proton pump is essential for pollen development. Genetics 168:1677–1687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakthivel S, Manigandan V (2011) Tissue culture studies in tomato (Lycopersicon esculentum, PKM1) from cotyledonary leaf explants. Int J Chem Pharm Sci 2:22–25

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Simona U, Michela Z, Cristina R, Fiorella S, Antonio M, Luigi C, Giampiero V (2013) An Agrobacterium tumefaciens-mediated gene silencing system for functional analysis in grapevine. Plant Cell Tissue Organ Cult 114:49–60

    Article  Google Scholar 

  • Snedecor G, Cocharn W (1967) Statistical methods, 6th edn. Iowa State University Press, Ames

    Google Scholar 

  • Stacey J, Isaac PG (1994) Isolation of DNA from plants. In: Isaac PG (ed) Methods in molecular biology: protocols for nucleic acid analysis by nonradioactive probes, vol 28. Humana Press, Totowa, pp 9–15

    Chapter  Google Scholar 

  • Sun H, Uchii S, Watanabe S, Ezura H (2005) A high efficient transformation protocol for Microtom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    Article  PubMed  Google Scholar 

  • Takada N, Nelson P (1983) A new consistency method for tomato products: the precipitate weight ratio. J Food Sci 48:1460–1462

    Article  Google Scholar 

  • Tomson M, Manjula S (2011) Optimization of Agrobacterium-mediated transient gene expression and endogenous gene silencing in Piper colubrinum Link. by vacuum infiltration. Plant Cell Tissue Organ Cult 105(1):113–119

    Article  Google Scholar 

  • Tripathi L (2005) Techniques for detecting genetically modified crops and products. Afr J Biotechnol 4:1472–1479

    CAS  Google Scholar 

  • Wang Q, Carmichael GG (2004) Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 68:432–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wesley V, Helliwell A, Smith A, Wang B, Rouse T, Liu Q, Gooding S, Singh P, Abbott D, Stoutjesdijk A, Robinson P, Gleave P, Green G, Waterhouse M (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Wie H, Gregory C (2001) A combination of overgrowth-control antibiotics improves Agrobacterium tumefaciens-mediated transformation efficiency for cultivated tomato (L. esculentum). In vitro Cell Dev Biol Plant 37:12–18

    Article  Google Scholar 

  • Wing A, Zhang B, Tanksley D (1994) Map-based cloning in crop plants. Tomato as a model system. I. Genetic and physical mapping of jointless. Mol Genet Gen J 242:681–688

    CAS  Google Scholar 

  • Wusirika R, Zhiping D, Chang-Kui D, Avtar K, Richard H (2003) A novel small heat shock protein gene, vis 1, contributes to pectin depolymerization and juice viscosity in tomato fruit. Plant Physiol 131:725–735

    Article  Google Scholar 

  • Ying W, Paula P (2014) Agrobacterium-mediated transformation of black cherry for flowering control and insect resistance. Plant Cell Tissue Organ Cult 119:107–116

    Article  Google Scholar 

  • Yueju W, Michael W, Richard M, Minggang C, Leslie F (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 8:87–90

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under Grant Number (965-003-D1434). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab M. R. Metwali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metwali, E.M.R., Soliman, H.I.A., Fuller, M.P. et al. Improving fruit quality in tomato (Lycopersicum esculentum Mill) under heat stress by silencing the vis 1 gene using small interfering RNA technology. Plant Cell Tiss Organ Cult 121, 153–166 (2015). https://doi.org/10.1007/s11240-014-0691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0691-1

Keywords

Navigation