Skip to main content
Log in

Cobalt induced augmentation of in vitro morphogenic potential in Erythrina variegata L.: a multipurpose tree legume

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient in vitro micropropagation system for Erythrina variegata, a multipurpose tree legume was orchestrated as a tool for evaluating the effect of cobalt on morphogenesis and physiological processes of the plant. Various factors effecting in vitro growth and development were optimized. Among all the different concentrations and combinations evaluated, combination of 5.0 µM 6-benzylaminopurine (BA) and 0.5 µM 1-naphthaleneacetic acid (NAA) supplemented to MS medium induced maximum number (12.9) of shoots per explant with greatest (4.8 cm) average shoot length in 93.6 % cultures. Augmentation of cobalt at lower concentration (50 µM) to the optimized media significantly enhanced the growth parameters (shoot number and shoot length) and chlorophyll content of the cultures, while higher concentrations were detrimental. Rooting of the microshoots was most efficiently induced on ½ MS medium supplemented with 2.5 µM indole-3-butyric acid (IBA) where a maximum of 3.3 roots per shoot with an average root length of 3.2 cm were recorded. Exposure of cultures to optimized cobalt concentration enhanced the rhizogenic competence of the microshoots resulting in a greater percentage (83.5 %) of rooting on the same medium as compared to unexposed cultures (74 %). Genetic stability of the clones exposed to optimum cobalt concentration was established by screening of 570 bands produced by 10 ISSR-PCR primers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods in enzymology. Oxygen radicals in biological systems. Academic Press, Orlando, pp 121–126

    Chapter  Google Scholar 

  • Ahmad N, Anis M (2007) Rapid clonal multiplication of a woody tree, Vitex negundo L. through axillary shoots proliferation. Agrofor Syst 71:195–200

    Article  Google Scholar 

  • Ahmad N, Anis M (2011) An efficient in vitro process for recurrent production of cloned plants of Vitex negundo L. Eur J For Res 130:135–144

    Article  CAS  Google Scholar 

  • Ahmad N, Khan MI, Ahmed S, Javed SB, Faisal M, Anis M, Rehman S, Umair SM (2013) Change in total phenolic content and antibacterial activity in regenerants of Vitex negundo L. Acta Physiol Plant 35:791–800

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arun M, Subramanyam K, Theboral J, Ganapathi A, Manickavasagam M (2014) Optimized shoot regeneration for Indian soybean: the influence of exogenous polyamines. Plant Cell Tissue Organ Cult 117:305–309

    Article  CAS  Google Scholar 

  • Bollard EG (1983) Involvement of unusual elements in plant growth and nutrition. Encycl Plant Physiol 15:695–744

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chaney RL (1984) Diagnostic practices to identify iron deficiency in higher plants. J Plant Nutr 7:47–67

    Article  CAS  Google Scholar 

  • Coenen C, Lomax TL (1997) Auxin–cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2:351–356

    Article  CAS  PubMed  Google Scholar 

  • Cram WT (1973) Internal factors regulating nitrate and chloride influx in plant cells. J Exp Bot 24:328–341

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dinneny JR, Benfey PN (2008) Plant stem cell niches: standing the test of time. Cell 132:553–557

    Article  CAS  PubMed  Google Scholar 

  • Doyle J, Doyle J (1990) Isolation of DNA from small amounts of plant tissue. BRL Focus 12:13–15

    Google Scholar 

  • Fatima N, Ahmad N, Anis M (2011) Enhanced in vitro regeneration and change in photosynthetic pigments, biomass and proline content in Withania somnifera L. (Dunal) induced by copper and zinc ions. Plant Physiol Biochem 49:1465–1471

    Article  CAS  PubMed  Google Scholar 

  • Francis D, Sorrell DA (2001) The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul 33:1–12

    Article  CAS  Google Scholar 

  • Gad N (2005) Interactive effect of salinity and cobalt on tomato plants. II. Some physiological parameters as affected by cobalt and salinity. Res J Agric Biolog Sci 1:270–276

    Google Scholar 

  • Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33:382–388

    Article  CAS  Google Scholar 

  • George EF, Puttock DJM, George HJ (1988) Plant culture media, vol 2. Exegetics Ltd., Westbury

    Google Scholar 

  • Gepstein S, Thimann KV (1981) The role of ethylene in the senescence of oat leaves. Plant Physiol 68:349–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grover S, Purves WK (1976) Cobalt and plant development interactions with ethylene in hypocotyl growth. Plant Physiol 57:886–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hallsworth EG, Wilson SB, Adams WA (1965) Effect of cobalt on the non-nodulated legume. Nature 205:305–307

    Article  Google Scholar 

  • Hand C, Reed BM (2014) Minor nutrient are critical for the improved growth of Corylus avellana shoot culture. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-014-0545-x

    Google Scholar 

  • Heyl A, Schmülling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488

    Article  CAS  PubMed  Google Scholar 

  • Husain MK, Anis M (2009) Rapid in vitro multiplication of Melia azedarach L. (a multipurpose woody tree). Acta Physiol Plant 31:765–772

    Article  CAS  Google Scholar 

  • Islam S, Wetten A (1999) In vitro regeneration of Erythrina variegata, a multipurpose fast-growing tree in Bangladesh. Plant Tissue Cult 9:97–105

    Google Scholar 

  • Jain P, Kachhwaha S, Kothari SL (2009) Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) Bertoni by using high copper levels in the culture medium. Sci Hortic 119:315–319

    Article  CAS  Google Scholar 

  • Jaleel CA, Changxing Z, Jayakumar K, Iqbal M (2008) Low concentration of cobalt increases growth, biochemical constituents, mineral status and yield in Zea mays. J Sci Res 1:128–137

    Article  Google Scholar 

  • Javed SB, Anis M, Khan PR, Aref IM (2013) In vitro regeneration and multiplication for mass propagation of Acacia ehrenbergiana Hayne: a potential reclaiment of denude arid lands. Agrofor Syst 87:621–629

    Article  Google Scholar 

  • Jesupillai M, Palanivelu M, Rajamanickam V, Sathyanarayanan S (2008) Anticonvulsant effect of Erythrina indica LAM. Pharmacologyonline 3:744–747

    Google Scholar 

  • Khalid MCB, Latche A, Roustan JP, Fallot J (1991) Stimulation of shoot regeneration from cotyledons of Helianthus annuus by the ethylene inhibitors, silver and cobalt. Plant Cell Rep 10:204–207

    Google Scholar 

  • Khan MI, Anis M (2012) Modulation of in vitro morphogenesis in nodal segments of Salix tetrasperma Roxb. through the use of TDZ, different media types and culture regimes. Agrofor Syst 86:95–103

    Article  Google Scholar 

  • Kulkarni AA, Thengane SR, Krishnamurthy KU (2000) Direct shoot regeneration from node, internode, hypocotyl and embryo explant of Withania somnifera. Plant Cell Tissue Organ Cult 62:203–209

    Article  Google Scholar 

  • Lau OL, Yang SF (1976) Inhibition of ethylene production by cobaltous ion. Plant Physiol 58:114–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipskaya GA (1974) Effect of cobalt and heteroauxin on the morphology and structure of barley leaf. Vyestsi Akad Navuk BSSR Syer Biyal Navak 5:121–123

    Google Scholar 

  • Locke JM, Bryce JH, Morris PC (2000) Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). J Exp Bot 51:1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Loercher L, Liverman JL (1964) Influence of cobalt on leaf expansion and oxidative phosphorylation. Plant Physiol 39:720–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacKinney G (1941) Absorption of light by chlorophyll solution. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • McCown BH, Lloyd G (1981) Woody plant medium (WPM)—a mineral nutrient formulation for microculture of woody plant-species. HortScience 16:453

    Google Scholar 

  • Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell Online 21:3326–3338

    Article  CAS  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin–auxin crosstalk. Trends Plant Sci 14:557–562

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Naz R, Anis M (2012) Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L. Appl Biochem Biotechnol 168:1239–1255

    Article  CAS  PubMed  Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestry database: a tree reference and selection guide version 4 0. World Agroforestry Centre, Kenya. http://www.worldagroforestry.org/resources/databases/agroforestree. Accessed 4 Apr 2013

  • Oven M, Grill E, Golan-Goldhirsh A, Kutchan TM, Zenk MH (2002) Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60:467–474

    Article  CAS  PubMed  Google Scholar 

  • Perveen S, Anis M, Aref IM (2011) In vitro morphogenic response and metal accumulation in Albizia lebbeck (L.) cultures grown under metal stress. Eur J For Res 131:669–681

    Article  Google Scholar 

  • Perveen S, Anis M, Aref IM (2013) In vitro plant regeneration of Albizia lebbeck (L.) from seed explants. For Syst 22:241–248

    Google Scholar 

  • Pua EC, Sim GE, Chi GL, Kong LF (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15:685–690

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan M, Cesar SA, Duraipandiya V, Ignacimuthu S (2014) Efficient plant regeneration from shoot apex explant of mays (Zea mays) and analysis of fidelity of regenerated plants by ISSR markers. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-014-0525-1

    Google Scholar 

  • Rao MV (1992) Cellular detoxifying mechanism determines age dependent injury in tropical plants exposed to SO2. J Plant Physiol 40:733–740

    Article  Google Scholar 

  • Ratnasooriya WD, Dharmasiri MG (1999) Aqueous extract of Sri Lankan Erythrina indica leaves has sedative but not analgesic activity. Fitoterapia 70:311–313

    Article  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Rey M, Díaz-Sala C, Rodríguez R (1994) Exogenous polyamines improve rooting of hazel microshoots. Plant Cell Tissue Organ Cult 36:303–308

    Article  CAS  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1989) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Rep 8:182–185

    Article  CAS  PubMed  Google Scholar 

  • Sachin SS, Archana RJ (2009) Antiulcer activity of methanol extract of Erythrina indica Lam. leaves in experimental animals. Pharmacognosy Res 1:396–401

    Google Scholar 

  • Shasthree T, Imran MA, Mallaiah B (2009) In vitro rooting from callus cultures derived from seedling explants of Erythrina variegata L. Curr Trends Biotechnol Pharm 3:447–452

    CAS  Google Scholar 

  • Siddique I, Anis M (2007) In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia (Vahl.): a medicinal plant. Acta Physiol Plant 29:233–238

    Article  CAS  Google Scholar 

  • Sobieszczuk-Nowicka E, Legocka J (2013) Plastid-associated polyamines: their role in differentiation, structure, functioning, stress response and senescence. Plant Biol. doi:10.1111/plb.12058

    PubMed  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN, Bisht SS (2002) Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci 162:381–388

    Article  CAS  Google Scholar 

  • Tiburcio AF, Campos JL, Figueras X, Besford RT (1993) Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul 12:331–340

    Article  CAS  Google Scholar 

  • Trujillo-Moya C, Gisbert C (2012) The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell Tissue Organ Cult 111:41–48

    Article  CAS  Google Scholar 

  • Varshney A, Anis M (2014) Trees: propagation and conservation. Biotechnological approaches for propagation of a multipurpose tree, Balanities aegyptiaca Del. Springer, India

    Google Scholar 

  • Vijayarengan P, Gomathinayagam M, Panneerselvam R (2009) Effect of different concentrations of cobalt on morphological parameters and yield components of soybean. Glob J Mol Sci 4:10–14

    Google Scholar 

  • Whistler WA, Elevitch CR (2006) Fagraea berteroana (pua kenikeni). Species Profiles for Pacific Island Agroforestry, Version 3.2, Apr 2006, pp 1–11. http://www.traditionaltree.org. Accessed 22 Sept 2011

  • White PJ, Broadley MR (2001) Chloride in soil and its uptake and movement within the plant: A Review. Ann Bot 88:697–988

  • Wilson SB, Nicholas DJD (1967) A cobalt requirement for non-nodulated legumes and for wheat. Phytochemistry 6:1057–1066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Anis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, S.B., Anis, M. Cobalt induced augmentation of in vitro morphogenic potential in Erythrina variegata L.: a multipurpose tree legume. Plant Cell Tiss Organ Cult 120, 463–474 (2015). https://doi.org/10.1007/s11240-014-0613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0613-2

Keywords

Navigation