Skip to main content
Log in

In vitro morphogenic response and metal accumulation in Albizia lebbeck (L.) cultures grown under metal stress

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

An efficient regeneration protocol for rapid mass propagation and uptake of heavy metals in Albizia lebbeck (L.), a fast growing, medicinally as well as economically important timber yielding tree was developed. Nodal segments derived from a 20-year-old tree were cultured on MS (Murashige and Skoog) medium supplemented with 10 μM 6-Benzyladenine (BA) and 1 μM α-Naphthalene acetic acid (NAA) showed optimum shoot regeneration frequency (76.6%), number of shoots (23.2 ± 0.28) per explant and shoot length (2.86 ± 0.08 cm) after 10 weeks of culture. After standardizing a reliable protocol for micropropagation, effects of ZnSO4 (0.06–0.48 mM), CuSO4 (0.02–0.2 mM) and CdCl2 (0.0001–0.001 mM) on shoot morphogenesis were also assessed. The regenerated shoots maintained on maintenance medium (MS + 10.0 μM BA + 1.0 μM NAA) containing ZnSO4 (0.06 mM) showed maximum response in terms of shoot number (24.5 ± 0.83) and length (5.9 ± 0.05 cm) after 10 weeks of culture. Proline content showed an increasing trend while chlorophyll (a and b) content exhibited decreasing trend with an increased metal concentrations compared to MM cultures, and maximum increase in proline and decrease in chlorophyll content was recorded in cultures grown on Cd-enriched medium. Best rooting was accomplished on half strength MS medium with 2.0 μM IBA and ZnSO4 (0.06 mM). The plantlets thus obtained were successfully hardened and transferred to greenhouse with 75% survival rate and exhibited normal morphological characteristics compared to donor plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

IBA:

Indole-3-butyric acid

DDW:

Double distilled water

Kn:

Kinetin

MM:

Maintenance medium

MS:

Murashige and Skoog medium

NAA:

α-Naphthalene acetic acid

ZnSO4 :

Zinc sulfate

chl:

chlorophyll

CuSO4 :

Copper sulfate

CdCl2 :

Cadmium chloride

AAS:

Atomic Absorption Spectrophotometer

References

  • Agarwal V, Sharma K (2006) Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica. Biol Plant 50:307–310

    Article  Google Scholar 

  • Agresti A (1996) An introduction to categorical data analysis. Wiley, New York

    Google Scholar 

  • Ahmad N, Anis M (2011) An efficient in vitro process for recurrent production of cloned plants of Vitex negundo L. Eur J Forest Res 130:135–144

    Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (1998) Morphogenic response and proline content in Bacopa monniera cultures grown under copper stress. Plant Sci 138:191–195

    Article  CAS  Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (2001) Responses of Bacopa monniera cultures to cadmium toxicity. Bull Environ Contam Toxicol 66:342–349

    Article  PubMed  CAS  Google Scholar 

  • Almeida AAFD, Valle RR, Mielke MS, Gomes FP (2007) Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Braz J plant physiol 19:2

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Arora M, Kiran B, Rani S, Rani A, Kaur B, Mittal N (2008) Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem 111:811–815

    Article  CAS  Google Scholar 

  • Ashraf M, Fooland MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 9:206–216

    Article  Google Scholar 

  • Balestrasse KB, Gallego SM, Benavides MP, Tomaro ML (2005) Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant Soil 270:343–353

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare JD (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Chen CT, Chen LM, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci 160:283–290

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  • Dinakar N, Nagajyothi PC, Suresh S, Udaykiran Y, Damodharan T (2008) Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogeal L. seedlings. J Environ Sci 20:199–206

    Article  CAS  Google Scholar 

  • Gatti E (2008) Micropropagation of Ailanthus altissima and in vitro heavy metal tolerance. Biol Plant 52:146–148

    Article  CAS  Google Scholar 

  • George EF, Hall MA, Klerk GJD (2008) Plant propagation by tissue culture: the background, vol 1, 3rd edn. Springer, Dordrecht, pp 88–90

    Google Scholar 

  • Ghanaya AB, Charles G, Hourmant A, Hamida JB, Branchard M (2007) Morphological and physiological characteristics of rapeseed plants regenerated in vitro from thin cell layers in presence of zinc. CR Biologies 330:728–734

    Article  Google Scholar 

  • Ghanaya AB, Hourmant A, Cerantola S, Kervarec N, Cabon JY, Branchard M, Charles G (2010) Influence of zinc on soluble carbohydrate and free amino acid levels in rapeseed plants regenerated in vitro in the presence of zinc. Plant Cell Tiss Organ Cult 102:191–197

    Article  Google Scholar 

  • Guadagnini M, Herzig R, Erismann KH, Müller-Schärer H (1999) In vitro Züchtung, Selektion und Erprobung von metalakkumulierenden Tabakvarianten zur Bodensanierung. TerraTech 6:52–54

    Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Htwe NN, Maziah M, Ling HC, Zaman FQ, Zain AM (2011) Response of some selected Malaysian rice genotype to callus induction under in vitro salt stress. Afri J Biotech 10:350–362

    CAS  Google Scholar 

  • Hussain TM, Chandrasekhar T, Gopal GR (2008) Micropropagation of Sterculia urens Roxb, an endangered tree species from intact seedlings. Afri J Biotechnol 7:095–101

    CAS  Google Scholar 

  • Jain N, Babbar SB (2000) Recurrent production of plants of black plum Syzygium cumini (L.) Skeels, a myrtaceous fruit tree, from in vitro cultured seedling explants. Plant Cell Rep 19:519–525

    Article  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of Cadmium and lead on growth biochemical parameters and uptake in Lamna polyrrhiza L. Plant Soil Environ 54:262–270

    CAS  Google Scholar 

  • Kaveriappa KM, Phillips LM, Trigiano RN (1997) Micropropagation of flowering dogwood (Cornus florida) from seedlings. Plant Cell Rep 16:485–489

    CAS  Google Scholar 

  • Khan MA, Ahmad I (2005) Multiple shoot induction and plant regeneration in Litchi (Litchi chinensis Sonn.). Int J Agri Biol 7:524–526

    Google Scholar 

  • Kiran B, Kudesia R, Rani M, Pal A (2009) Reclaiming degraded land in India through the cultivation of medicinal plants. Bot Res Int 2:174–181

    Google Scholar 

  • Kirtikar KR, Basu BD (1980) In: Singh B, Singh MP (eds) Indian medicinal plants, India, Part ii, p 937

  • Kothari SL, Agarwal K, Kumar S (2004) Inorganic nutrient manipulation for highly improved in vitro plant regeneration in Finger Millet- Elevsiae corocana (L.) Gaerth. In Vitro Cell Dev Biol Plant 40:515–519

    Article  CAS  Google Scholar 

  • Kovacs E, Nyitrai P, Czovek P, Ovari M, Keresztes A (2009) Investigation into the mechanism of the phosphoinositide signalling pathway in the anti-senescence effect of low- concentration stressors on detached barley leaves. Plant Biol 9:420–426

    Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solution. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Maiti RK, Pinero JLH, Oreja JG, Santiago DL (2004) Plant based bioremediation and mechanisms of heavy metal tolerance of plants: a review. Proc Indian Natn Sci Acad B 70:1–12

    CAS  Google Scholar 

  • Mamun ANK, Matin MN, Bari MA, Siddique NA, Sultana RS, Rahman MH, Musa ASM (2004) Micropropagation of woody legume (Albizia lebbeck) through tissue culture. Pak J Bio Sci 7:1099–1103

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic press, Cambridge

    Google Scholar 

  • Mohan BS, Hosetti BB (2006) Phytotoxicity of cadmium on the physiological dynamics of Salvinia natans L. grown in macrophyte ponds. J Environ Boil 27:701–704

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Erismann KH, Schwitzguebel JP (2007) In vitro breeding of Brassica juncea L. To enhance metal accumulation and extraction properties. Plant Cell Rep 26:429–437

    Article  PubMed  CAS  Google Scholar 

  • Nyitrai P, Mayer M, Keresztes O (2007) Involvement of the phosphoinositide signaling pathway in anti senescence effect of low concentration stressors on detached barley leaves. Plant Biol 9:420–426

    Article  PubMed  CAS  Google Scholar 

  • Oncel I, Kele Y, Ustun AS (2000) Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Poll 107:315–320

    Article  CAS  Google Scholar 

  • Perveen S, Varshney A, Anis M (2011) Influence of cytokinins, basal media and pH on adventitious shoot regeneration from excised root cultures of Albizia lebbeck L. J For Res 22:47–52

    Article  CAS  Google Scholar 

  • Prasad MNV, Malee P, Waloszek A, Bajko M, Strzalka K (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889

    Article  CAS  Google Scholar 

  • Purnhauser L, Gyalai G (1993) Effect of copper on shoot and root regeneration in wheat, triticale, and rape and tobacco tissue cultures. Plant Cell Tiss Org Cult 35:131–139

    Article  CAS  Google Scholar 

  • Rabier J, Prudent P, Szymanska B, Mevy JP (2003) Metal accumulating plants: mediums role. J de Physique Archives IV France 107:1115–1118

    Article  CAS  Google Scholar 

  • Ratsch G, Christian K (2004) Enzyklopadie der psychoktiven Pflanzen, Botanik, Ethnopharmakologie and Anwendungen, 17th edn. Springer, Berlin

    Google Scholar 

  • Rosa GDL, Videa JRP, Montes M, Parsons JG, Aguilera IC, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in Tumble weed (Salsola kali), a potential Cd- hyper accumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168

    Article  PubMed  Google Scholar 

  • Rout GR, Samantaray S, Das P (1999) In vitro selection and biochemical characterisation of zinc and manganese adapted callus lines in Brassica spp. Plant Sci 146:89–100

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  PubMed  CAS  Google Scholar 

  • Sharmila P, Pardha Saradhi P (2002) Proline accumulation in heavy metal stressed plants: an adaptive strategy. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, pp 179–200

    Google Scholar 

  • Singh AN, Zeng DN, Chen FS (2005) Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment. India J Environ Sci 20:168–174

    Google Scholar 

  • Spirochova IK, Punchocharova J, Kafka Z, Kubal M, Soudek P, Vevek T (2003) Accumulation of heavy metals by in vitro cultures of plants. Water Air Soil Poll Focus 3:269–276

    Article  Google Scholar 

  • Srivastava PS, Ali G, Iqbal M, Narula A, Bharti N (2002) Micropropagation of Bacopa and effect of heavy metals on growth performance. In: Nandi SK, Palni LMS, Kumar A (eds) Role of plant tissue culture in biodiversity conservation and economic development. Gyanodaya Prakashan, Nanital, pp 325–344

    Google Scholar 

  • Sugla T, Purkayastha J, Singh SK (2007) Micropropagation of Pongamia pinnata through enhanced axillary branching. In Vitro Cell Dev Biol Plant 43:409–414

    Article  CAS  Google Scholar 

  • Szafranska K, Cvikrova M, Kowalska U, Gorecka K, Gorecki R, Martincova O, Janas KM (2010) Influence of copper ions on growth, lipid peroxidation, and proline and polyamines content in carrot rosettes obtained from anther culture. doi:10.1007/s11738-010-0610y

  • Tantrey MS, Agnihotry RK (2010) Chlorophyll and proline content of Gram (Cicer arietinum L.) under cadmium and mercury treatments. Res J Agri Sci 1:119–122

    Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Vankatramany P (1968) Silviculture of genus Albizia and species. Silviculture of Indian trees. No. 22. Government of India, Delhi, p 54

    Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–87

    CAS  Google Scholar 

  • Xu J, Yin H, Li X (2009) Protective effect of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum. Plant Cell Rep 28:325–333

    Article  PubMed  CAS  Google Scholar 

  • Zengin FK, Kirbag S (2007) Effect of copper on chlorophyll, proline and abcisic acid level of Sunflower (Helianthus annuus L.) seedlings. J Environ Biol 28:561–566

    PubMed  CAS  Google Scholar 

  • Zenk MH (1996) Heavy meal detoxification in higher plants- a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

  • Zhang-Pei, Zhou Qin, Jiang-Haidong (2007) Alleviate effects of exogenous ascorbate acid on Cd stress of rape seedlings. Plant Physiol 46:73–77

    Google Scholar 

Download references

Acknowledgments

Financial support from the DST–FIST (2005–2010) and UGC- SAP (DRS-I) programmes (2009–2014), Govt of India, New Delhi, is highly appreciated. The authors are thankful to Prof. Athar Ali Khan, Department of Statistics, Aligarh Muslim University, Aligarh, for extending his cooperation in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Anis.

Additional information

Communicated by A. Merino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perveen, S., Anis, M. & Aref, I.M. In vitro morphogenic response and metal accumulation in Albizia lebbeck (L.) cultures grown under metal stress. Eur J Forest Res 131, 669–681 (2012). https://doi.org/10.1007/s10342-011-0540-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0540-2

Keywords

Navigation